scholarly journals Evaluation of Arctic sea-ice drift and its dependency on near-surface wind and sea-ice concentration and thickness in the coupled regional climate model HIRHAM-NAOSIM

2019 ◽  
Author(s):  
Xiaoyong Yu ◽  
Annette Rinke ◽  
Wolfgang Dorn ◽  
Gunnar Spreen ◽  
Christof Lüpkes ◽  
...  

Abstract. We examine the simulated Arctic sea-ice drift speed for the period 2003–2014 in the coupled Arctic regional climate model HIRHAM-NAOSIM 2.0. In particular, we evaluate the dependency of the drift speed on the near-surface wind speed and sea-ice conditions. Considering the seasonal cycle of Arctic basin averaged drift speed, the model reproduces the summer-autumn drift speed well, but significantly overestimates the winter-spring drift speed, compared to satellite-derived observations. Also, the model does not capture the observed seasonal phase lag between drift and wind speed, but the simulated drift speed is more in phase with near-surface wind. The model calculates a realistic negative relationship between drift speed and ice thickness and between drift speed and ice concentration during summer-autumn when concentration is relatively low, but the correlation is weaker than observed. A daily grid-scale diagnostic indicates that the model reproduces the observed positive relationship between drift and wind speed. The strongest impact of wind changes on drift speed occurs for high and moderate wind speeds, with a low impact for calm conditions. The correlation under low-wind conditions is overestimated in the simulations, compared to observation/reanalysis. A sensitivity experiment demonstrates the significant effects of sea-ice form drag included by an improved parameterization of the transfer coefficients for momentum and heat over sea ice. However, this does not improve the agreement of the modelled drift speed/wind speed ratio with observations based on reanalysis for wind and remote sensing for sea ice drift. An improvement might be possible, among others, by tuning the open parameters of the parameterization in future.

2020 ◽  
Vol 14 (5) ◽  
pp. 1727-1746
Author(s):  
Xiaoyong Yu ◽  
Annette Rinke ◽  
Wolfgang Dorn ◽  
Gunnar Spreen ◽  
Christof Lüpkes ◽  
...  

Abstract. We examine the simulated Arctic sea ice drift speed for the period 2003–2014 in the coupled Arctic regional climate model HIRHAM–NAOSIM 2.0. In particular, we evaluate the dependency of the drift speed on the near-surface wind speed and sea ice conditions. Considering the seasonal cycle of the Arctic basin averaged drift speed, the model reproduces the summer–autumn drift speed well but significantly overestimates the winter–spring drift speed, compared to satellite-derived observations. Also, the model does not capture the observed seasonal phase lag between drift and wind speed, but the simulated drift speed is more in phase with the near-surface wind. The model calculates a realistic negative correlation between drift speed and ice thickness and between drift speed and ice concentration during summer–autumn when the ice concentration is relatively low, but the correlation is weaker than observed. A daily grid-scale diagnostic indicates that the model reproduces the observed positive correlation between drift and wind speed. The strongest impact of wind changes on drift speed occurs for high and moderate wind speeds, with a low impact for rather calm conditions. The correlation under low-wind conditions is overestimated in the simulations compared to observation/reanalysis data. A sensitivity experiment demonstrates the significant effects of sea ice form drag from floe edges included by an improved parameterization of the transfer coefficients for momentum and heat over sea ice. However, this does not improve the agreement of the modeled drift speed / wind speed ratio with observations based on reanalysis data for wind and remote sensing data for sea ice drift. An improvement might be achieved by tuning parameters that are not well established by observations.


Polar Record ◽  
2018 ◽  
Vol 54 (5-6) ◽  
pp. 303-311 ◽  
Author(s):  
Satwant Kaur ◽  
Jens K. Ehn ◽  
David G. Barber

AbstractMonthly mean passive microwave-derived sea-ice motion maps for 36 winters (October–April) are used to examine pan-Arctic sea-ice drift speeds and patterns. The mean Arctic Ocean sea-ice motion consists of three well-known primary circulation regimes: the Beaufort Gyre (BG), transpolar drift (TPD), and a motion system from the Kara Sea (KS). The 36-year mean winter sea-ice drift pattern is used to identify the average boundaries between the circulation regimes mentioned above. Regression analyses of the ice drift speed anomalies show statistically significant positive drift speed trends in BG, TPD and KS. Non-significant trends are associated with negative trends of generally weak drift speeds north of the Canadian Arctic and over the Chukchi/East Siberian Shelf. The first three modes of Empirical Orthogonal Functions were found to explain 30.2%, 13.5% and 8.7% of the spatial variance in the mean winter ice drift patterns and highlight the large variability in the ice drift patterns.


2017 ◽  
Vol 11 (6) ◽  
pp. 2829-2846 ◽  
Author(s):  
David Docquier ◽  
François Massonnet ◽  
Antoine Barthélemy ◽  
Neil F. Tandon ◽  
Olivier Lecomte ◽  
...  

Abstract. Sea ice cover and thickness have substantially decreased in the Arctic Ocean since the beginning of the satellite era. As a result, sea ice strength has been reduced, allowing more deformation and fracturing and leading to increased sea ice drift speed. We use the version 3.6 of the global ocean–sea ice NEMO-LIM model (Nucleus for European Modelling of the Ocean coupled to the Louvain-la-Neuve sea Ice Model), satellite, buoy and submarine observations, as well as reanalysis data over the period from 1979 to 2013 to study these relationships. Overall, the model agrees well with observations in terms of sea ice extent, concentration and thickness. The seasonal cycle of sea ice drift speed is reasonably well reproduced by the model. NEMO-LIM3.6 is able to capture the relationships between the seasonal cycles of sea ice drift speed, concentration and thickness, with higher drift speed for both lower concentration and lower thickness, in agreement with observations. Model experiments are carried out to test the sensitivity of Arctic sea ice drift speed, thickness and concentration to changes in sea ice strength parameter P*. These show that higher values of P* generally lead to lower sea ice deformation and lower sea ice thickness, and that no single value of P* is the best option for reproducing the observed drift speed and thickness. The methodology proposed in this analysis provides a benchmark for a further model intercomparison related to the relationships between sea ice drift speed and strength, which is especially relevant in the context of the upcoming Coupled Model Intercomparison Project 6 (CMIP6).


2019 ◽  
Author(s):  
Rolf Zentek ◽  
Günther Heinemann

Abstract. The non-hydrostatic regional climate model CCLM was used for a long-term hindcast run (2002–2016) for the Weddell Sea region with resolutions of 15 and 5 km and two different turbulence parametrizations. CCLM was nested in ERA-Interim data. We prescribed sea-ice concentration from satellite data, and used a thermodynamic sea-ice model. The performance of the model was evaluated in terms of temperature and wind using data from Antarctic stations, AWS over land and sea ice, operational forecast model and reanalyses data, and lidar wind profiles. For the reference run we found a warm bias for the near-surface temperature over the Antarctic plateau. This bias was removed in the second run by adjusting the turbulence parametrization, which results in a more realistic representation of the surface inversion over the plateau. Differences in other regions were small. A comparison with measurements over the sea ice of the Weddell Sea by three AWS buoys for one year showed small biases for temperature around 1 K and for wind speed of 1 m s−1. Comparisons of radio soundings showed a model bias around zero and a RMSE of 1–2 K for temperature and of 3–4 m s−1 for wind speed. The comparison of CCLM simulations at resolutions down to 1 km with wind data from Doppler Lidar measurements during December 2015 and January 2016 yielded almost no bias in wind speed and RMSE of ca. 2 m s−1. Overall CCLM shows a good representation of temperature and wind for the Weddell Sea region. These results encourage for further studies using CCLM data for the regional climate in the Antarctic at high resolutions and the study of atmosphere-ice-ocean interactions processes.


2020 ◽  
Vol 13 (4) ◽  
pp. 1809-1825 ◽  
Author(s):  
Rolf Zentek ◽  
Günther Heinemann

Abstract. The nonhydrostatic regional climate model CCLM was used for a long-term hindcast run (2002–2016) for the Weddell Sea region with resolutions of 15 and 5 km and two different turbulence parametrizations. CCLM was nested in ERA-Interim data and used in forecast mode (suite of consecutive 30 h long simulations with 6 h spin-up). We prescribed the sea ice concentration from satellite data and used a thermodynamic sea ice model. The performance of the model was evaluated in terms of temperature and wind using data from Antarctic stations, automatic weather stations (AWSs), an operational forecast model and reanalyses data, and lidar wind profiles. For the reference run we found a warm bias for the near-surface temperature over the Antarctic Plateau. This bias was removed in the second run by adjusting the turbulence parametrization, which results in a more realistic representation of the surface inversion over the plateau but resulted in a negative bias for some coastal regions. A comparison with measurements over the sea ice of the Weddell Sea by three AWS buoys for 1 year showed small biases for temperature around ±1 K and for wind speed of 1 m s−1. Comparisons of radio soundings showed a model bias around 0 and a RMSE of 1–2 K for temperature and 3–4 m s−1 for wind speed. The comparison of CCLM simulations at resolutions down to 1 km with wind data from Doppler lidar measurements during December 2015 and January 2016 yielded almost no bias in wind speed and a RMSE of ca. 2 m s−1. Overall CCLM shows a good representation of temperature and wind for the Weddell Sea region. Based on these encouraging results, CCLM at high resolution will be used for the investigation of the regional climate in the Antarctic and atmosphere–ice–ocean interactions processes in a forthcoming study.


2014 ◽  
Vol 119 (9) ◽  
pp. 5755-5775 ◽  
Author(s):  
Einar Olason ◽  
Dirk Notz

2021 ◽  
Author(s):  
Charles Brunette ◽  
L. Bruno Tremblay ◽  
Robert Newton

Abstract. Free drift estimates of sea ice motion are necessary to produce a seamless observational record combining buoy and satellite-derived sea ice motion vectors. We develop a new parameterization for the free drift of sea ice based on wind forcing, wind turning angle, sea ice state variables (concentration and thickness) and ocean current (as a residual). Building on the fact that the spatially varying standard wind-ice transfer coefficient (considering only surface wind stress) has a structure as the spatial distribution of sea ice thickness, we introduce a wind-ice transfer coefficient that scales linearly with thickness. Results show a mean error of −0.5 cm/s (low-speed bias) and a root-mean-square error of 5.1 cm/s, considering daily buoy drift data as truth. This represents a 31 % reduction of the error on drift speed compared to the free drift estimates used in the Polar Pathfinder dataset. The thickness-dependent wind transfer coefficient provides an improved seasonality and long-term trend of the sea ice drift speed, with a minimum (maximum) drift speed in May (October), compared to July (January) for the constant wind transfer coefficient parameterizations which simply follow the peak in mean surface wind stresses. The trend in sea ice drift in this new model is +0.45 cm/s decade−1 compared with +0.39 cm/s decade−1 from the buoy observations, whereas there is essentially no trend in the standard free drift parameterization (−0.01 cm/s decade−1) or the Polar Pathfinder free drifts (−0.03 cm/s decade−1). The wind turning angle that minimize the cost function is equal of 25°, with a mean and root-mean square error of +2.6° and 51° on the direction of the drift, respectively. The residual from the minimization procedure (i.e. the ocean currents) resolves key large scale features such as the Beaufort Gyre and Transpolar Drift Stream, and is in good agreement with ocean state estimates from the ECCO, GLORYS and PIOMAS ice-ocean reanalyses, and geostrophic currents from dynamical ocean topography, with a root-mean-square difference of 2.4, 2.9, 2.6 and 3.8 cm/s, respectively. Finally, a repeat of the analysis on a two sub-section of the time series (pre- and post-2000) clearly shows the acceleration of the Beaufort Gyre (particularly along the Alaskan coastline) and an expansion of the gyre in the post-2000 concurrent with a thinning of the sea ice cover and observations acceleration of the ice drift speed and ocean current. This new dataset is publicly available for complementing merged observations-based sea ice drift datasets that includes satellite and buoy drift records.


2017 ◽  
Vol 11 (4) ◽  
pp. 1707-1731 ◽  
Author(s):  
Jennifer V. Lukovich ◽  
Cathleen A. Geiger ◽  
David G. Barber

Abstract. A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute) dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP) high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time) changed from superdiffusive (α ∼ 3) to ballistic (α ∼ 2) as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.


Sign in / Sign up

Export Citation Format

Share Document