scholarly journals Isotope hydrological studies of the perennial ice deposit of Saarhalle, Mammuthöhle, Dachstein Mts, Austria

2011 ◽  
Vol 5 (1) ◽  
pp. 291-298 ◽  
Author(s):  
Z. Kern ◽  
I. Fórizs ◽  
R. Pavuza ◽  
M. Molnár ◽  
B. Nagy

Abstract. A 5.28 m-long ice core was extracted from a major cave ice body in the Mammuthöhle cave system. The upper ~1.2 m of ice most likely originate from precipitation fallen before the 1960s (based on <8.5 TU). Characteristic fluctuations in electrical conductivity were observed in the cave ice profile, which seem to mirror the fluctuation of karst and surface water in the water supply of the ice accumulation. The stable isotope composition does not support the hypothesis that ice layers with low conductivity are formed by freezing out of water vapour. Isotope fractionation effects during the freezing process are indicated by the enrichment of heavy stable isotopes (2H, 18O) in the ice compared to the potential sources (local precipitation, karst water) and by the characteristically low d-excess values. In addition, the cave ice water line shows a slope coefficient of 8.13. A two-component open-system model (i.e. a depleted component mixed with the freezing water) can adequately explain the measured isotopic compositions of the Saarhalle cave ice.

2010 ◽  
Vol 4 (3) ◽  
pp. 1449-1465 ◽  
Author(s):  
Z. Kern ◽  
I. Fórizs ◽  
M. Molnár ◽  
B. Nagy ◽  
R. Pavuza

Abstract. A 5.28 m long ice core was extracted from the major cave ice block of the Mammuthöhle cave system. Tritium concentration in eight samples from the upper 1.2 m of the core was measured. Electrical conductivity measurements were achieved on molten water samples and stable oxygen and hydrogen isotopic compositions were also analysed. The upper ~1.2 m of ice has been deposited from precipitation fallen before the 1960s (based on tritium < 8.5 TU). The Saarhalle ice block is build from atmospheric precipitation and the water perfectly preserved the isotopic composition; however the mean 18O/16O ratio of the ice is less depleted compared to the long-term (1973–1983) 18O/16O ratio of precipitation at Feuerkogel the nearest (~32 km) reference station situated in the same elevation like Mammuthöhle cave. Characteristic fluctuation was observed in the conductivity along the studied cave ice profile. The conductivity oscillations seem to mirror the changing partition of karstic water and surface meltwater in the water supply of the ice accumulation. The ice layers with low conductivity seem to archive past events when more meltwater-like water have been drained and frozen onto the ice block.


2000 ◽  
Vol 46 (152) ◽  
pp. 140-150 ◽  
Author(s):  
Bryn Hubbard ◽  
Jean-Louis Tison ◽  
Laurent Janssens ◽  
Baruch Spiro

AbstractFive ice cores have been retrieved from a transect close to the terminus of Glacier de Tsanfleuron, Switzerland. The cores extend from the ice surface to the glacier bed, and are 3.5–44.8 m long. Stratigraphic logging based on bubble size and density reveals the presence of a highly metamorphosed basal ice layer, about 10 m thick, from which all traces of bubble-rich ice have been removed. This bubble-poor ice, which corresponds closely with clear-facies ice observed in cavities beneath numerous temperate-based glaciers, contrasts with the overlying bubble-rich or bubble-foliated englacial ice and the underlying debris-rich and bubble-free dispersed-facies basal ice.Down-core patterns in major-ion composition, stable-isotope composition and total gas content and composition are generally consistent with formation of clear-facies ice by deformation-related metamorphism of bubbly, englacial ice. In addition, isotopic data suggest that storage of downward-percolating meltwaters occurs close to the upper surface of the clear-facies ice layer, perhaps reflecting a local variation in ice permeability across the transition from englacial to clear-facies ice. Enrichment in crustally derived ionic species is noted in the lowermost decimetres of the debris-free, clear-facies ice that immediately overlies debris-rich dispersed-facies basal ice. This ionic enrichment in debris-free ice is interpreted in terms of active inter-granular meltwater flow within some decimetres of the glacier bed.


Abstract In this study, already published and new monitoring data are compiled from the Baradla and Béke caves in the Aggtelek Karst, from the Vacska Cave in the Pilis Mountains as well as from the Szemlőhegy and Pálvölgy caves in the Buda Hills. Recent investigations (2019–2020) include monitoring of climatological parameters (e.g., temperature, CO2) measured inside and outside the caves, and the chemical, trace element and stable isotopic compositions of drip waters. In the Baradla Cave, the main focus of the investigation was on the stable isotope composition and the temperature measurements of drip water. In the Vacska Cave, which belongs to the Ajándék-Ariadne cave system, CO2 measurements and drip water collection were conducted in order to perform chemical and stable isotope measurements. In the Szemlőhegy and Pálvölgy caves, the chemical and stable isotope compositions of drip waters at six sites were determined. These datasets were used to characterize the studied caves and the hydrological processes taking place in the karst, and to trace anthropogenic influences. Climatological investigation revealed seasonality in CO2 concentration related to outside temperature variation, indicating a variable ventilation regime in the caves. In addition, the contributions of the winter and summer precipitation to the drip water were also estimated, in order to evaluate the main infiltration period. The knowledge of these parameters plays a crucial role in constraining the carbonate precipitation within the cave. Thus, the dataset compiled in this study can provide a basis for the interpretation of speleothem-based proxies.


2019 ◽  
Vol 98 ◽  
pp. 07013
Author(s):  
Thomas Kretzschmar ◽  
Matteo Lelli ◽  
Ruth Alfaro ◽  
Juan Ignacio Sanchez ◽  
Yann Rene Ramos

It is important to develop a regional hydrogeological model to identify possible recharge and discharge areas for a sustainable use of a geothermal reservoir. The Los Humeros geothermal area is situated within five surficial watersheds and coveres an area of more than 15.000 km2. A total of 208 well and spring samples were collected between June 2017 and November 2018. The stable isotope data for this region define a regression line of δDH2O = 8.032·δ18O + 12 and indicate that groundwater is recharged by regional precipitation. At least 39 groundwater wells, with a maximum temperature of 35 °C, show temperatures above the reported mean average surface temperature of 15 °C. Characteristic elements for geothermal reservoir fluids (B, Li, As) are also present in these groundwaters, indicating a possible connection between the reservoir fluid and the local groundwater through local fracture systems. Concentration of B in these hot wells is between 150 and 35000 ppb.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82205 ◽  
Author(s):  
Tatiana Lemos Bisi ◽  
Paulo Renato Dorneles ◽  
José Lailson-Brito ◽  
Gilles Lepoint ◽  
Alexandre de Freitas Azevedo ◽  
...  

2005 ◽  
Vol 19 (14) ◽  
pp. 1937-1942 ◽  
Author(s):  
Bojlul Bahar ◽  
Frank J. Monahan ◽  
Aidan P. Moloney ◽  
Padraig O'Kiely ◽  
Charlie M. Scrimgeour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document