ion composition
Recently Published Documents


TOTAL DOCUMENTS

657
(FIVE YEARS 65)

H-INDEX

60
(FIVE YEARS 3)

2022 ◽  
Vol 924 (1) ◽  
pp. 22
Author(s):  
Fan Guo ◽  
Lulu Zhao ◽  
Christina M. S. Cohen ◽  
Joe Giacalone ◽  
R. A. Leske ◽  
...  

Abstract We propose a model for interpreting highly variable ion composition ratios in solar energetic particle (SEP) events recently observed by the Parker Solar Probe (PSP) at 0.3–0.45 au. We use numerical simulations to calculate SEP propagation in a turbulent interplanetary magnetic field with a Kolmogorov power spectrum from large scales down to the gyration scale of energetic particles. We show that when the source regions of different species are offset by a distance comparable to the size of the source regions, the observed energetic particle composition He/H can be strongly variable over more than two orders of magnitude, even if the source ratio is at the nominal value. Assuming a 3He/4He source ratio of 10% in impulsive 3He-rich events and the same spatial offset of the source regions, the 3He/4He ratio at observation sites also vary considerably. The variability of the ion composition ratios depends on the radial distance, which can be tested by observations made at different radial locations. We discuss the implications of these results on the variability of ion composition of impulsive events and on further PSP and Solar Orbiter observations close to the Sun.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 45
Author(s):  
Paul Dietl ◽  
Manfred Frick

The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.


2021 ◽  
Author(s):  
Benjamin Alterman ◽  
Mihir Desai ◽  
Maher Dayeh ◽  
Glenn Mason ◽  
George Ho

2021 ◽  
Author(s):  
Lisa J. Beck ◽  
Siegfried Schobesberger ◽  
Heikki Junninen ◽  
Janne Lampilahti ◽  
Antti Manninen ◽  
...  

Abstract. At SMEAR II research station in Hyytiälä, located in the Finnish boreal forest, the process of new particle formation and the role of ions has been investigated for almost 20 years near the ground and at canopy level. However, above SMEAR II, the vertical distribution and diurnal variation of these different atmospheric ions are poorly characterized. In this study, we assess the atmospheric ion composition in the stable boundary layer, residual layer, mixing layer and free troposphere, and the 5 evolution of these atmospheric ions due to photochemistry and turbulent mixing through the day. To measure the vertical profile of atmospheric ions, we developed a tailored setup for online mass spectrometric measurements, capable of being deployed in a Cessna 172 with minimal modifications. Simultaneously, instruments dedicated to aerosol properties measured in a second Cessna. We conducted a total of 16 measurement flights in May 2017, during the spring, which is the most active new particle formation season. A flight day typically consisted of three distinct flights through the day (dawn, morning and afternoon) to 10 observe the diurnal variation and at different altitudes (from 100 m to 3200 m above ground), and to capture the boundary layer development from stable boundary layer, residual layer to mixing layer, and the free troposphere. Our observations showed that the ion composition is distinctly different in each layer and depends on the air mass origin and time of the day. Before sunrise, the layers are separated from each other and have their own ion chemistry. We observed that the ions present within the stable layer are of the same composition as the ions measured at the canopy level. During daytime when the mixing layer evolved and the compounds are vertically mixed, we observed that highly oxidised organic molecules are distributed to the top of the boundary layer. The ion composition in the residual layer varies with each day, showing similarities with either the stable boundary layer or the free troposphere. Finally, within the free troposphere, we detected a variety of carboxylic acids and ions that are likely containing halogens, originating from the Arctic Sea.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1507
Author(s):  
Manuela Rossi ◽  
Biagio Barone ◽  
Dante Di Domenico ◽  
Rodolfo Esposito ◽  
Antonio Fabozzi ◽  
...  

The ion content of drinking water might be associated with urinary stone formation, representing a keystone of conservative nephrolithiasis management. However, the effects of specific ions on calcium oxalate crystal formation and their mechanism of action are still highly controversial. We report an investigation of the effects of oligomineral waters with similar total salt amount but different ion composition on calcium oxalate (CaOx) precipitation in vitro, combining gravimetric and microscopic assays. The results suggest that the “collective” physicochemical properties of the aqueous medium, deriving from the ion combination rather than from a single ionic species, are of importance. Particularly, the ability of ions to strengthen/weaken the aqueous medium structure determines an increase/decrease in the interfacial energy, modulating the formation and growth of CaOx crystals.


2021 ◽  
Author(s):  
Lisa Johanna Beck ◽  
Siegfried Schobesberger ◽  
Veli-Matti Kerminen ◽  
Markku Kulmala

Abstract. Sulfuric acid (H2SO4, SA) is the key compound in atmospheric new particle formation. Therefore, it is crucial to observe its concentration with sensitive instrumentation, such as chemical ionisation inlets coupled to Atmospheric Pressure interface Time-of-Flight mass spectrometers (CI-APi-TOF). However, there are environmental conditions and physical reasons when chemical ionisation cannot be used, for example in certain remote places or flight measurements with limitations regarding chemicals. In these cases, it is important to estimate the SA concentration based on ambient ion composition and concentration measurements that are achieved by APi-TOF alone. Here we derive a theoretical expression to estimate SA concentration and validate it with accurate CI-APi-TOF observations. The developed estimate works very well during daytime and with SA concentrations above 2⋅106 cm-3.


Author(s):  
О. Троїцька ◽  
K. Belokon ◽  
E Manidina ◽  
V. Ryzkov

Environmental assessment of current state of the Dnieper surface water from Zaporozhye areas water abstractions based on land surface water quality qualification by salt composition is carried out. Quality degradation of the Dnieper surface water by ion composition is discovered with analysis. Ecological condition of the surface water is defines as ”mediocre” and level of contamination is characterized as mildly polluted”.


2021 ◽  
Vol 21 (17) ◽  
pp. 13067-13076
Author(s):  
Alex R. Baker ◽  
Chan Yodle

Abstract. The speciation of soluble iodine and major-ion composition were determined in size-fractionated aerosols collected during the AMT21 cruise between Avonmouth, UK, and Punta Arenas, Chile, in September–November 2011. The proportions of iodine species (iodide, iodate and soluble organic iodine (SOI)) varied markedly between size fractions and with the extent to which the samples were influenced by pollutants. In general, fine mode aerosols (< 1 µm) contained higher proportions of both iodide and SOI, while iodate was the dominant component of coarse (< 1 µm) aerosols. The highest proportions of iodate were observed in aerosols that contained (alkaline) unpolluted sea spray or mineral dust. Fine mode samples with high concentrations of acidic species (e.g. non-sea-salt sulfate) contained very little iodate and elevated proportions of iodide and SOI. These results are in agreement with modelling studies that indicate that iodate can be reduced under acidic conditions and that the resulting hypoiodous acid (HOI) can react with organic matter to produce SOI and iodide. Further work that investigates the link between iodine speciation and aerosol pH directly, as well as studies on the formation and decay of organo-iodine compounds under aerosol conditions, will be necessary before the importance of this chemistry in regulating aerosol iodine speciation can be confirmed.


2021 ◽  
Vol 126 (9) ◽  
Author(s):  
Matthew K. James ◽  
Tim K. Yeoman ◽  
Petra Jones ◽  
Jasmine K. Sandhu ◽  
Jerry Goldstein

Sign in / Sign up

Export Citation Format

Share Document