scholarly journals A combined approach of remote sensing and airborne electromagnetics to determine the volume of polynya sea ice in the Laptev Sea

2013 ◽  
Vol 7 (3) ◽  
pp. 947-959 ◽  
Author(s):  
L. Rabenstein ◽  
T. Krumpen ◽  
S. Hendricks ◽  
C. Koeberle ◽  
C. Haas ◽  
...  

Abstract. A combined interpretation of synthetic aperture radar (SAR) satellite images and helicopter electromagnetic (HEM) sea-ice thickness data has provided an estimate of sea-ice volume formed in Laptev Sea polynyas during the winter of 2007/08. The evolution of the surveyed sea-ice areas, which were formed between late December 2007 and middle April 2008, was tracked using a series of SAR images with a sampling interval of 2–3 days. Approximately 160 km of HEM data recorded in April 2008 provided sea-ice thicknesses along profiles that transected sea ice varying in age from 1 to 116 days. For the volume estimates, thickness information along the HEM profiles was extrapolated to zones of the same age. The error of areal mean thickness information was estimated to be between 0.2 m for younger ice and up to 1.55 m for older ice, with the primary error source being the spatially limited HEM coverage. Our results have demonstrated that the modal thicknesses and mean thicknesses of level ice correlated with the sea-ice age, but that varying dynamic and thermodynamic sea-ice growth conditions resulted in a rather heterogeneous sea-ice thickness distribution on scales of tens of kilometers. Taking all uncertainties into account, total sea-ice area and volume produced within the entire surveyed area were 52 650 km2 and 93.6 ± 26.6 km3. The surveyed polynya contributed 2.0 ± 0.5% of the sea-ice produced throughout the Arctic during the 2007/08 winter. The SAR-HEM volume estimate compares well with the 112 km3 ice production calculated with a~high-resolution ocean sea-ice model. Measured modal and mean-level ice thicknesses correlate with calculated freezing-degree-day thicknesses with a factor of 0.87–0.89, which was too low to justify the assumption of homogeneous thermodynamic growth conditions in the area, or indicates a strong dynamic thickening of level ice by rafting of even thicker ice.

2013 ◽  
Vol 7 (1) ◽  
pp. 441-473 ◽  
Author(s):  
L. Rabenstein ◽  
T. Krumpen ◽  
S. Hendricks ◽  
C. Koeberle ◽  
C. Haas ◽  
...  

Abstract. A combined interpretation of synthetic aperture radar (SAR) satellite images and helicopter electromagnetic (HEM) sea-ice thickness data has provided an estimate of sea-ice volume formed in Laptev Sea polynyas during the winter of 2007/08. The evolution of the surveyed sea-ice areas, which were formed between late December 2007 and middle April 2008, was tracked using a series of SAR images with a sampling interval of 2–3 days. Approximately 160 km of HEM data recorded in April 2008 provided sea-ice thicknesses along profiles that transected sea-ice varying in age from 1–116 days. For the volume estimates, thickness information along the HEM profiles was extrapolated to zones of the same age. The error of areal mean thickness information was estimated to be between 0.2 m for younger ice and up to 1.55 m for older ice, with the primary error source being the spatially limited HEM coverage. Our results have demonstrated that the modal thicknesses and mean thicknesses of level ice correlated with the sea-ice age, but that varying dynamic and thermodynamic sea-ice growth conditions resulted in a rather heterogeneous sea-ice thickness distribution on scales of tens of kilometers. Taking all uncertainties into account, total sea-ice area and volume produced within the entire surveyed area were 52 650 km2 and 93.6 ± 26.6 km3. The surveyed polynya contributed 2.0 ± 0.5% of the sea-ice produced throughout the Arctic during the 2007/08 winter. The SAR-HEM volume estimate compares well with the 112 km3 ice production calculated with a high resolution ocean sea-ice model. Measured modal and mean-level ice thicknesses correlate with calculated freezing-degree-day thicknesses with a factor of 0.87–0.89, which was too low to justify the assumption of homogeneous thermodynamic growth conditions in the area, or indicates a strong dynamic thickening of level ice by rafting of even thicker ice.


2020 ◽  
Vol 14 (7) ◽  
pp. 2189-2203
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Stefan Hendricks ◽  
Jens Hoelemann ◽  
Markus A. Janout ◽  
...  

Abstract. The gridded sea ice thickness (SIT) climate data record (CDR) produced by the European Space Agency (ESA) Sea Ice Climate Change Initiative Phase 2 (CCI-2) is the longest available, Arctic-wide SIT record covering the period from 2002 to 2017. SIT data are based on radar altimetry measurements of sea ice freeboard from the Environmental Satellite (ENVISAT) and CryoSat-2 (CS2). The CCI-2 SIT has previously been validated with in situ observations from drilling, airborne remote sensing, electromagnetic (EM) measurements and upward-looking sonars (ULSs) from multiple ice-covered regions of the Arctic. Here we present the Laptev Sea CCI-2 SIT record from 2002 to 2017 and use newly acquired ULS and upward-looking acoustic Doppler current profiler (ADCP) sea ice draft (VAL) data for validation of the gridded CCI-2 and additional satellite SIT products. The ULS and ADCP time series provide the first long-term satellite SIT validation data set from this important source region of sea ice in the Transpolar Drift. The comparison of VAL sea ice draft data with gridded monthly mean and orbit trajectory CCI-2 data, as well as merged CryoSat-2–SMOS (CS2SMOS) sea ice draft, shows that the agreement between the satellite and VAL draft data strongly depends on the thickness of the sampled ice. Rather than providing mean sea ice draft, the considered satellite products provide modal sea ice draft in the Laptev Sea. Ice drafts thinner than 0.7 m are overestimated, while drafts thicker than approximately 1.3 m are increasingly underestimated by all satellite products investigated for this study. The tendency of the satellite SIT products to better agree with modal sea ice draft and underestimate thicker ice needs to be considered for all past and future investigations into SIT changes in this important region. The performance of the CCI-2 SIT CDR is considered stable over time; however, observed trends in gridded CCI-2 SIT are strongly influenced by the uncertainties of ENVISAT and CS2 and the comparably short investigation period.


2020 ◽  
Vol 14 (4) ◽  
pp. 1325-1345 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Xuanji Wang ◽  
Mark Tschudi

Abstract. Sea ice is a key component of the Arctic climate system, and has impacts on global climate. Ice concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice thickness from submarine sonar data (1984–2000) and ICESat (2003–2008) and an empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice age product, and the Arctic monthly sea ice volume is then calculated. The ice-age-based thickness and volume show good agreement in terms of bias and root-mean-square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as ICESat and CryoSat-2 ice volume, in February–March and October–November. More detailed comparisons with independent data from Envisat for 2003 to 2010 and CryoSat-2 from CPOM, AWI, and NASA GSFC (Goddard Space Flight Center) for 2011 to 2018 show low bias in ice-age-based thickness. The ratios of the ice volume uncertainties to the mean range from 21 % to 29 %. Analysis of the derived data shows that the ice-age-based sea ice volume exhibits a decreasing trend of −411 km3 yr−1 from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting the sea ice volume trends, changes in sea ice thickness contribute more than changes in sea ice area, with a contribution of at least 80 % from changes in sea ice thickness from November to May and nearly 50 % in August and September, while less than 30 % is from changes in sea ice area in all months.


2011 ◽  
Vol 5 (1) ◽  
pp. 131-167
Author(s):  
A. Oikkonen ◽  
J. Haapala

Abstract. Changes of the mean sea ice thickness and concentration in the Arctic are well known. However, comparable little is known about the ice thickness distribution and the composition of ice pack in quantity. In this paper we determine the ice thickness distributions, mean and modal thicknesses, and their regional and seasonal variability in the Arctic under different large scale atmospheric circulation modes. We compare characteristics of the Arctic ice pack during the periods 1975–1987 and 1988–2000, which have a different distribution in the AO/DA space. The study is based on submarine measurements of sea ice draft. The prevalent feature is that the peak of sea ice thickness distributions has generally taken a narrower form and shifted toward thinner ice. Also, both mean and modal ice thickness have generally decreased. These noticeable changes result from a loss of thick, mostly deformed, ice. In the spring the loss of the volume of ice thicker than 5 m exceeds 35% in all regions except the Nansen Basin, and the reduction is as much as over 45% at the North Pole and in the Eastern Arctic. In the autumn the volume of thick, mostly deformed ice has decreased by more than 40% in the Canada Basin only, but the reduction is more than 30% also in the Beaufort Sea and in the Chukchi Sea. In the Beaufort Sea region the decrease of the modal draft has been so strong that the peak has shifted from multiyear ice to first-year type ice. Also, the regional and seasonal variability of the sea ice thickness has decreased, since the thinning has been the most pronounced in the regions with the thickest pack ice (the Western Arctic), and during the spring (0.6–0.8 m per decade).


2021 ◽  
Author(s):  
Nicholas Williams ◽  
Nicholas Byrne ◽  
Daniel Feltham ◽  
Peter Jan Van Leeuwen ◽  
Ross Bannister ◽  
...  

<div><span>A modified, standalone version of the Los Alamos Sea Ice Model (CICE) has been coupled to the Parallelized Data Assimilation Framework (PDAF) to produce a new Arctic sea ice data assimilation system CICE-PDAF, with routines for assimilating many types of recently developed sea ice observations. In this study we explore the effects of assimilating a sub-grid scale sea ice thickness distribution derived from Cryosat-2 Arctic sea ice estimates into CICE-PDAF. The true state of the sub-grid scale ice thickness distribution is not well established, and yet it plays a key role in large scale sea ice models and is vital to the dynamical and thermodynamical processes necessary to produce a good representation of the Arctic sea ice state. We examine how assimilating sub-grid scale sea ice thickness distributions can affect the evolution of the sea ice state in CICE-PDAF and better our understanding of the Arctic sea ice system.</span></div>


2016 ◽  
Author(s):  
Petteri Uotila ◽  
Dorotea Iovino ◽  
Martin Vancoppenolle ◽  
Mikko Lensu ◽  
Clement Rousset

Abstract. A set of hindcast simulations with the new NEMO3.6 ocean-ice model in the ORCA1 grid and forced by the DFS5.2 atmospheric data was performed from 1958–2012. We focussed on simulations that differ only in their sea-ice component: the old standard version LIM2 and its successor LIM3. Main differences between these sea-ice models are the parameterisations of sub-grid-scale sea-ice thickness distribution, ice deformation, thermodynamic processes, and sea-ice salinity. Our main objective was to diagnose the ocean-ice sensitivity to the updated NEMO-LIM sea-ice physics. Results of such analysis have not been published for this new NEMO version. In the polar regions, NEMO-LIM3 compares better with observations, while NEMO-LIM2 deviates more, producing too much ice in the Arctic, for example. Differences between NEMO-LIM2 and NEMO-LIM3 do not change in simulations even when the freshwater adjustments are turned off. In the extra-polar regions, the oceanographic conditions of the two NEMO-LIM versions remain relatively similar, although they slowly drift apart over decades. A simplified NEMO-LIM3 configuration, having a virtual, single-category sea-ice thickness distribution, produced sea ice with a skill sufficient for ocean-ice hindcasts that target oceanographic studies. We conclude that NEMO3.6 is ready to be used as a stand-alone ocean-ice model and as a component of coupled atmosphere-ocean models.


2020 ◽  
Author(s):  
Hans Jakob Belter ◽  
Thomas Krumpen ◽  
Stefan Hendricks ◽  
Jens A. Hoelemann ◽  
Markus A. Janout ◽  
...  

Abstract. The gridded sea ice thickness (SIT) climate data record (CDR) produced by the European Space Agency (ESA) Sea Ice Climate Change Initiative Phase 2 (CCI-2) is the longest available, Arctic-wide SIT record covering the period from 2002 to 2017. SIT data is based on radar altimetry measurements of sea ice freeboard from the Environmental Satellite (ENVISAT) and CryoSat-2 (CS2). The CCI-2 SIT has previously been validated with in situ observations from drilling, airborne electromagnetic (EM) measurements and Upward-Looking Sonars (ULS) from multiple ice-covered regions of the Arctic. Here we present the Laptev Sea CCI-2 SIT record from 2002 to 2017 and use newly acquired ULS and upward-looking Acoustic Doppler Current Profiler (ADCP) sea ice draft data (VAL) for validation of the gridded CCI-2 and additional satellite SIT products. The ULS and ADCP time series provide the first long-term satellite SIT validation data set from this important source region of sea ice in the Transpolar Drift. The comparison of VAL sea ice draft data with gridded monthly mean and orbit trajectory CCI-2 data, as well as merged CryoSat-2/SMOS (CS2SMOS) sea ice draft shows that the agreement between the satellite and VAL draft data strongly depends on the thickness of the sampled ice. Rather than providing mean sea ice draft the considered satellite products provide modal sea ice draft in the Laptev Sea. Ice thinner than the modal draft is overestimated, while thicker ice is increasingly underestimated by all satellite products investigated for this study. This tendency of the satellite SIT products to better agree with modal sea ice draft and underestimate thicker ice needs to be considered for all past and future investigations into SIT changes in this important region. The performance of the CCI-2 SIT CDR is considered stable over time, however, observed trends in gridded CCI-2 SIT are strongly influenced by the uncertainties of ENVISAT and CS2 and the comparably short investigation period.


2020 ◽  
Vol 13 (10) ◽  
pp. 4773-4787
Author(s):  
Eduardo Moreno-Chamarro ◽  
Pablo Ortega ◽  
François Massonnet

Abstract. This study assesses the impact of different sea ice thickness distribution (ITD) discretizations on the sea ice concentration (SIC) variability in ocean stand-alone NEMO3.6–LIM3 simulations. Three ITD discretizations with different numbers of sea ice thickness categories and boundaries are evaluated against three different satellite products (hereafter referred to as “data”). Typical model and data interannual SIC variability is characterized by K-means clustering both in the Arctic and Antarctica between 1979 and 2014. We focus on two seasons, winter (January–March) and summer (August–October), in which correlation coefficients across clusters in individual months are largest. In the Arctic, clusters are computed before and after detrending the series with a second-degree polynomial to separate interannual from longer-term variability. The analysis shows that, before detrending, winter clusters reflect the SIC response to large-scale atmospheric variability at both poles, while summer clusters capture the negative and positive trends in Arctic and Antarctic SIC, respectively. After detrending, Arctic clusters reflect the SIC response to interannual atmospheric variability predominantly. The cluster analysis is complemented with a model–data comparison of the sea ice extent and SIC anomaly patterns. The single-category discretization shows the worst model–data agreement in the Arctic summer before detrending, related to a misrepresentation of the long-term melting trend. Similarly, increasing the number of thin categories reduces model–data agreement in the Arctic, due to a poor representation of the summer melting trend and an overly large winter sea ice volume associated with a net increase in basal ice growth. In contrast, more thin categories improve model realism in Antarctica, and more thick ones improve it in central Arctic regions with very thick ice. In all the analyses we nonetheless identify no optimal discretization. Our results thus suggest that no clear benefit in the representation of SIC variability is obtained from increasing the number of sea ice thickness categories beyond the current standard with five categories in NEMO3.6–LIM3.


Sign in / Sign up

Export Citation Format

Share Document