scholarly journals Impact of the ice thickness distribution discretization on the sea ice concentration variability in the NEMO3.6–LIM3 global ocean–sea ice model

2020 ◽  
Vol 13 (10) ◽  
pp. 4773-4787
Author(s):  
Eduardo Moreno-Chamarro ◽  
Pablo Ortega ◽  
François Massonnet

Abstract. This study assesses the impact of different sea ice thickness distribution (ITD) discretizations on the sea ice concentration (SIC) variability in ocean stand-alone NEMO3.6–LIM3 simulations. Three ITD discretizations with different numbers of sea ice thickness categories and boundaries are evaluated against three different satellite products (hereafter referred to as “data”). Typical model and data interannual SIC variability is characterized by K-means clustering both in the Arctic and Antarctica between 1979 and 2014. We focus on two seasons, winter (January–March) and summer (August–October), in which correlation coefficients across clusters in individual months are largest. In the Arctic, clusters are computed before and after detrending the series with a second-degree polynomial to separate interannual from longer-term variability. The analysis shows that, before detrending, winter clusters reflect the SIC response to large-scale atmospheric variability at both poles, while summer clusters capture the negative and positive trends in Arctic and Antarctic SIC, respectively. After detrending, Arctic clusters reflect the SIC response to interannual atmospheric variability predominantly. The cluster analysis is complemented with a model–data comparison of the sea ice extent and SIC anomaly patterns. The single-category discretization shows the worst model–data agreement in the Arctic summer before detrending, related to a misrepresentation of the long-term melting trend. Similarly, increasing the number of thin categories reduces model–data agreement in the Arctic, due to a poor representation of the summer melting trend and an overly large winter sea ice volume associated with a net increase in basal ice growth. In contrast, more thin categories improve model realism in Antarctica, and more thick ones improve it in central Arctic regions with very thick ice. In all the analyses we nonetheless identify no optimal discretization. Our results thus suggest that no clear benefit in the representation of SIC variability is obtained from increasing the number of sea ice thickness categories beyond the current standard with five categories in NEMO3.6–LIM3.

2019 ◽  
Author(s):  
Eduardo Moreno-Chamarro ◽  
Pablo Ortega ◽  
François Massonnet

Abstract. This study assesses the impact of different sea ice thickness distribution (ITD) configurations on the sea ice concentration (SIC) variability in ocean-standalone NEMO3.6-LIM3 simulations. Three ITD configurations with different numbers of sea ice thickness categories and boundaries are evaluated against three different satellite products (hereafter referred to as “data”). Typical model and data interannual SIC variability is characterized by k-means clustering both in the Arctic and Antarctica between 1979 and 2014 in two seasons, January–March and August–October, which show the largest coherence across clusters in individual months. Analysis in the Arctic is done before and after detrending the series with a 2nd degree polynomial to separate interannual from longer-term variability. Before detrending, winter clusters capture SIC response to atmospheric variability at both poles and summer cluster a positive and negative trend in the Arctic and Antarctic SIC respectively. After detrending, Arctic clusters reflect SIC response to interannual atmospheric variability predominantly. Model–data cluster comparison suggests that no specific ITD configuration or category number increases realism of the simulated Arctic and Antarctic SIC variability in winter. In the Arctic summer, more thin-ice categories decrease model–data agreement without detrending but increase agreement after detrending. Overall, a single-category configuration agrees the worst with data. Direct model–data comparison of SIC anomaly fields shows that more thick-ice categories improve winter SIC variability realism in Central Arctic regions with very thick ice. By contrast, more thin-ice categories reduce model–data agreement in the Central Arctic in summer, due to an overly large simulated sea ice volume. In summary, whereas better resolving thin ice in NEMO3.6-LIM3 can hamper model realism in the Arctic but improve it in Antarctica, more thick-ice categories increase realism in the Arctic winter. And although the single-category configuration performs the worst overall, no optimal configuration is identified. Our results suggest that no clear benefit is obtained from increasing the number of sea ice thickness categories beyond the current usual standard of 5 categories in NEMO3.6-LIM3.


2014 ◽  
Vol 27 (10) ◽  
pp. 3784-3801 ◽  
Author(s):  
Paul R. Holland ◽  
Nicolas Bruneau ◽  
Clare Enright ◽  
Martin Losch ◽  
Nathan T. Kurtz ◽  
...  

Abstract Unlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice concentration over recent decades. However, observations of decadal trends in Antarctic ice thickness, and hence ice volume, do not currently exist. In this study a model of the Southern Ocean and its sea ice, forced by atmospheric reanalyses, is used to assess 1992–2010 trends in ice thickness and volume. The model successfully reproduces observations of mean ice concentration, thickness, and drift, and decadal trends in ice concentration and drift, imparting some confidence in the hindcasted trends in ice thickness. The model suggests that overall Antarctic sea ice volume has increased by approximately 30 km3 yr−1 (0.4% yr−1) as an equal result of areal expansion (20 × 103 km2 yr−1 or 0.2% yr−1) and thickening (1.5 mm yr−1 or 0.2% yr−1). This ice volume increase is an order of magnitude smaller than the Arctic decrease, and about half the size of the increased freshwater supply from the Antarctic Ice Sheet. Similarly to the observed ice concentration trends, the small overall increase in modeled ice volume is actually the residual of much larger opposing regional trends. Thickness changes near the ice edge follow observed concentration changes, with increasing concentration corresponding to increased thickness. Ice thickness increases are also found in the inner pack in the Amundsen and Weddell Seas, where the model suggests that observed ice-drift trends directed toward the coast have caused dynamical thickening in autumn and winter. Modeled changes are predominantly dynamic in origin in the Pacific sector and thermodynamic elsewhere.


2016 ◽  
Vol 33 (3) ◽  
pp. 397-407 ◽  
Author(s):  
Qinghua Yang ◽  
Martin Losch ◽  
Svetlana N. Losa ◽  
Thomas Jung ◽  
Lars Nerger

AbstractThe sensitivity of assimilating sea ice thickness data to uncertainty in atmospheric forcing fields is examined using ensemble-based data assimilation experiments with the Massachusetts Institute of Technology General Circulation Model (MITgcm) in the Arctic Ocean during November 2011–January 2012 and the Met Office (UKMO) ensemble atmospheric forecasts. The assimilation system is based on a local singular evolutive interpolated Kalman (LSEIK) filter. It combines sea ice thickness data derived from the European Space Agency’s (ESA) Soil Moisture Ocean Salinity (SMOS) satellite and Special Sensor Microwave Imager/Sounder (SSMIS) sea ice concentration data with the numerical model. The effect of representing atmospheric uncertainty implicit in the ensemble forcing is assessed by three different assimilation experiments. The first two experiments use a single deterministic forcing dataset and a different forgetting factor to inflate the ensemble spread. The third experiment uses 23 members of the UKMO atmospheric ensemble prediction system. It avoids additional ensemble inflation and is hence easier to implement. As expected, the model-data misfits are substantially reduced in all three experiments, but with the ensemble forcing the errors in the forecasts of sea ice concentration and thickness are smaller compared to the experiments with deterministic forcing. This is most likely because the ensemble forcing results in a more plausible spread of the model state ensemble, which represents model uncertainty and produces a better forecast.


2019 ◽  
Author(s):  
François Massonnet ◽  
Antoine Barthélemy ◽  
Koffi Worou ◽  
Thierry Fichefet ◽  
Martin Vancoppenolle ◽  
...  

Abstract. The Ice Thickness Distribution (ITD) is one of the core constituents of modern sea ice models. The ITD accounts for the unresolved spatial variability of sea ice thickness within each model grid cell. While there is a general consensus on the added physical realism brought by the ITD, how to implement it remains an open question. Here, we use the ocean--sea ice general circulation model NEMO3.6-LIM3 forced by atmospheric reanalyses to test how the ITD discretization (number of ice thickness categories, positions of the category boundaries) impacts the simulated mean Arctic and Antarctic sea ice states. We find that winter ice volumes in both hemispheres increase with the number of categories, and attribute that increase to a net enhancement of basal ice growth rates. The range of simulated mean winter volumes in the various experiments amounts to ~ 30 % and ~ 10 % of the reference values (run with 5 categories) in the Arctic and Antarctic, respectively. This suggests that the way the ITD is discretized has a significant influence on the model mean state, all other things being equal. We also find that the existence of a thick category with lower bounds at ~ 4 m and ~ 2 m for the Arctic and Antarctic, respectively, is a prerequisite for allowing the storage of deformed ice, and therefore for fostering thermodynamic growth in thinner categories. Our analysis finally suggests that increasing the resolution of the ITD without changing the lower limit of the upper category results in small but not negligible variations of ice volume and extent. Our study proposes for the first time a bi-polar process-based explanation of the origin of mean state changes when the ITD discretization is modified. The sensitivity experiments conducted in this study, based on one model, emphasize that the choice of category positions, especially of thickest categories, has a primary influence on the simulated mean sea ice states while the number of categories and resolution have only a secondary influence.


2019 ◽  
Vol 65 (251) ◽  
pp. 481-493
Author(s):  
MUKESH GUPTA ◽  
CAROLINA GABARRO ◽  
ANTONIO TURIEL ◽  
MARCOS PORTABELLA ◽  
JUSTINO MARTINEZ

ABSTRACTArctic sea ice is going through a dramatic change in its extent and volume at an unprecedented rate. Sea-ice thickness (SIT) is a controlling geophysical variable that needs to be understood with greater accuracy. For the first time, a SIT-retrieval method that exclusively uses only airborne SIT data for training the empirical algorithm to retrieve SIT from Soil Moisture Ocean Salinity (SMOS) brightness temperature (TB) at different polarization is presented. A large amount of airborne SIT data has been used from various field campaigns in the Arctic conducted by different countries during 2011–15. The algorithm attempts to circumvent the issue related to discrimination between TB signatures of thin SIT versus low sea-ice concentration. The computed SIT has a rms error of 0.10 m, which seems reasonably good (as compared to the existing algorithms) for analysis at the used 25 km grid. This new SIT retrieval product is designed for direct operational application in ice prediction/climate models.


2020 ◽  
Author(s):  
Xi Liang ◽  
Fu Zhao ◽  
Chunhua Li ◽  
Lin Zhang

<p>NMEFC provides sea ice services for the CHINARE since 2010, the products in the early stage (before 2017) include satellite-retrieved and numerical forecasts of sea ice concentration. Based on MITgcm and ensemble Kalman Filter data assimilation scheme,  the Arctic Ice-Ocean Prediction System (ArcIOPS v1.0), was established in 2017. ArcIOPS v1.0 assimilates available satellite-retrieved sea ice concentration and thickness data. Sea ice thickness forecasting products from ArcIOPS v1.0 are provided to the CHINARE8, and are believed to have played an important role in the successful passage of R/V XUELONG through the Central Arctic for the first time during the summer of 2017. In 2019, ArcIOPS v1.0 was upgraded to the latest version (ArcIOPS v1.1), which assimilates satellite-retrieved sea ice concentration, sea ice thickness, as well as sea surface temperature (SST) data in ice free areas. Comparison between outputs of the latest version of ArcIOPS and that of its previous version shows that the latest version has a substantial improvement on sea ice concentration forecasts. In the future, with more and more kinds of observations to be assimilated, the high-resolution version of ArcIOPS will be put into operational running and benefit Chinese scientific and commercial activities in the Arctic Ocean.</p>


2018 ◽  
Author(s):  
David Schröder ◽  
Danny L. Feltham ◽  
Michel Tsamados ◽  
Andy Ridout ◽  
Rachel Tilling

Abstract. Estimates of Arctic sea ice thickness are available from the CryoSat-2 (CS2) radar altimetry mission during ice growth seasons since 2010. We derive the sub-grid scale ice thickness distribution (ITD) with respect to 5 ice thickness categories used in a sea ice component (CICE) of climate simulations. This allows us to initialize the ITD in stand-alone simulations with CICE and to verify the simulated cycle of ice thickness. We find that a default CICE simulation strongly underestimates ice thickness, despite reproducing the inter-annual variability of summer sea ice extent. We can identify the underestimation of winter ice growth as being responsible and show that increasing the ice conductive flux for lower temperatures (bubbly brine scheme) and accounting for the loss of drifting snow results in the simulated sea ice growth being more realistic. Sensitivity studies provide insight into the impact of initial and atmospheric conditions and, thus, on the role of positive and negative feedback processes. During summer, atmospheric conditions are responsible for 50 % of September sea ice thickness variability through the positive sea ice and melt pond albedo feedback. However, atmospheric winter conditions have little impact on winter ice growth due to the dominating negative conductive feedback process: the thinner the ice and snow in autumn, the stronger the ice growth in winter. We conclude that the fate of Arctic summer sea ice is largely controlled by atmospheric conditions during the melting season rather than by winter temperature. Our optimal model configuration does not only improve the simulated sea ice thickness, but also summer sea ice concentration, melt pond fraction, and length of the melt season. It is the first time CS2 sea ice thickness data have been applied successfully to improve sea ice model physics.


2021 ◽  
Author(s):  
Francois Massonnet ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Ed Blockley ◽  
Pablo Ortega Montilla ◽  
...  

<p>It is well established that winter and spring Arctic sea-ice thickness anomalies are a key source of predictability for late summer sea-ice concentration. While numerical general circulation models (GCMs) are increasingly used to perform seasonal predictions, they are not systematically taking advantage of the wealth of polar observations available. Data assimilation, the study of how to constrain GCMs to produce a physically consistent state given observations and their uncertainties, remains, therefore, an active area of research in the field of seasonal prediction. With the recent advent of satellite laser and radar altimetry, large-scale estimates of sea-ice thickness have become available for data assimilation in GCMs. However, the sea-ice thickness is never directly observed by altimeters, but rather deduced from the measured sea-ice freeboard (the height of the emerged part of the sea ice floe) based on several assumptions like the depth of snow on sea ice and its density, which are both often poorly estimated. Thus, observed sea-ice thickness estimates are potentially less reliable than sea-ice freeboard estimates. Here, using the EC-Earth3 coupled forecasting system and an ensemble Kalman filter, we perform a set of sensitivity tests to answer the following questions: (1) Does the assimilation of late spring observed sea-ice freeboard or thickness information yield more skilful predictions than no assimilation at all? (2) Should the sea-ice freeboard assimilation be preferred over sea-ice thickness assimilation? (3) Does the assimilation of observed sea-ice concentration provide further constraints on the prediction? We address these questions in the context of a realistic test case, the prediction of 2012 summer conditions, which led to the all-time record low in Arctic sea-ice extent. We finally formulate a set of recommendations for practitioners and future users of sea ice observations in the context of seasonal prediction.</p>


2019 ◽  
Vol 12 (8) ◽  
pp. 3745-3758 ◽  
Author(s):  
François Massonnet ◽  
Antoine Barthélemy ◽  
Koffi Worou ◽  
Thierry Fichefet ◽  
Martin Vancoppenolle ◽  
...  

Abstract. The ice thickness distribution (ITD) is one of the core constituents of modern sea ice models. The ITD accounts for the unresolved spatial variability of sea ice thickness within each model grid cell. While there is a general consensus on the added physical realism brought by the ITD, how to discretize it remains an open question. Here, we use the ocean–sea ice general circulation model, Nucleus for European Modelling of the Ocean (NEMO) version 3.6 and Louvain-la-Neuve sea Ice Model (LIM) version 3 (NEMO3.6-LIM3), forced by atmospheric reanalyses to test how the ITD discretization (number of ice thickness categories, positions of the category boundaries) impacts the simulated mean Arctic and Antarctic sea ice states. We find that winter ice volumes in both hemispheres increase with the number of categories and attribute that increase to a net enhancement of basal ice growth rates. The range of simulated mean winter volumes in the various experiments amounts to ∼30 % and ∼10 % of the reference values (run with five categories) in the Arctic and Antarctic, respectively. This suggests that the way the ITD is discretized has a significant influence on the model mean state, all other things being equal. We also find that the existence of a thick category with lower bounds at ∼4 and ∼2 m for the Arctic and Antarctic, respectively, is a prerequisite for allowing the storage of deformed ice and therefore for fostering thermodynamic growth in thinner categories. Our analysis finally suggests that increasing the resolution of the ITD without changing the lower limit of the upper category results in small but not negligible variations of ice volume and extent. Our study proposes for the first time a bi-polar process-based explanation of the origin of mean sea ice state changes when the ITD discretization is modified. The sensitivity experiments conducted in this study, based on one model, emphasize that the choice of category positions, especially of thickest categories, has a primary influence on the simulated mean sea ice states while the number of categories and resolution have only a secondary influence. It is also found that the current default discretization of the NEMO3.6-LIM3 model is sufficient for large-scale present-day climate applications. In all cases, the role of the ITD discretization on the simulated mean sea ice state has to be appreciated relative to other influences (parameter uncertainty, forcing uncertainty, internal climate variability).


Sign in / Sign up

Export Citation Format

Share Document