scholarly journals Basal crevasses in Larsen C Ice Shelf and implications for their global abundance

2011 ◽  
Vol 5 (4) ◽  
pp. 2035-2060 ◽  
Author(s):  
A. Luckman ◽  
D. Jansen ◽  
B. Kulessa ◽  
E. C. King ◽  
P. Sammonds ◽  
...  

Abstract. Basal crevasses extend upwards from the base of ice bodies and can penetrate more than halfway through the ice column under conditions found commonly on ice shelves. As a result, they may locally modify the exchange of mass and energy between ice shelf and ocean, and by altering the shelf's mechanical properties could play a fundamental role in ice shelf stability. Although early studies revealed that such features may be abundant on Antarctic ice shelves, their geometrical properties and spatial distribution has gained little attention. We investigate basal crevasses in Larsen C Ice Shelf using field radar survey, remote sensing and numerical modelling. We demonstrate that a group of features visible in MODIS imagery are the surface expressions of basal crevasses in the form of surface troughs, and find that basal crevasses can be generated as a result of stresses well downstream of the grounding line. We show that linear elastic fracture mechanics modelling is a good predictor of basal crevasse penetration height where stresses are predominantly tensile, and that measured surface trough depth does not always reflect this height, probably because of snow accumulation in the trough, marine ice accretion in the crevasse, or stress bridging from the surrounding ice. We conclude that all features visible in MODIS imagery of ice shelves and previously labelled simply as "crevasses", where they are not full thickness rifts, must be basal crevasse troughs, highlighting a fundamental structural property of many ice shelves that may have been previously overlooked.

2012 ◽  
Vol 6 (1) ◽  
pp. 113-123 ◽  
Author(s):  
A. Luckman ◽  
D. Jansen ◽  
B. Kulessa ◽  
E. C. King ◽  
P. Sammonds ◽  
...  

Abstract. Basal crevasses extend upwards from the base of ice bodies and can penetrate more than halfway through the ice column under conditions found commonly on ice shelves. As a result, they may locally modify the exchange of mass and energy between ice shelf and ocean, and by altering the shelf's mechanical properties could play a fundamental role in ice shelf stability. Although early studies revealed that such features may be abundant on Antarctic ice shelves, their geometrical properties and spatial distribution has gained little attention. We investigate basal crevasses in Larsen C Ice Shelf using field radar survey, remote sensing and numerical modelling. We demonstrate that a group of features visible in MODIS imagery are the surface expressions of basal crevasses in the form of surface troughs, and find that basal crevasses can be generated as a result of stresses well downstream of the grounding line. We show that linear elastic fracture mechanics modelling is a good predictor of basal crevasse penetration height where stresses are predominantly tensile, and that measured surface trough depth does not always reflect this height, probably because of snow accumulation in the trough, marine ice accretion in the crevasse, or stress bridging from the surrounding ice. We conclude that all features visible in MODIS imagery of ice shelves and previously labelled simply as "crevasses", where they are not full thickness rifts, must be basal crevasse troughs, highlighting a fundamental structural property of many ice shelves that may have been previously overlooked.


2012 ◽  
Vol 6 (5) ◽  
pp. 973-984 ◽  
Author(s):  
C. Plate ◽  
R. Müller ◽  
A. Humbert ◽  
D. Gross

Abstract. The ongoing disintegration of large ice shelf parts in Antarctica raise the need for a better understanding of the physical processes that trigger critical crack growth in ice shelves. Finite elements in combination with configurational forces facilitate the analysis of single surface fractures in ice under various boundary conditions and material parameters. The principles of linear elastic fracture mechanics are applied to show the strong influence of different depth dependent functions for the density and the Young's modulus on the stress intensity factor KI at the crack tip. Ice, for this purpose, is treated as an elastically compressible solid and the consequences of this choice in comparison to the predominant incompressible approaches are discussed. The computed stress intensity factors KI for dry and water filled cracks are compared to critical values KIc from measurements that can be found in literature.


2016 ◽  
Author(s):  
Hongju Yu ◽  
Eric Rignot ◽  
Mathieu Morlighem ◽  
Helene Seroussi

Abstract. Thwaites Glacier (TG), West Antarctica, has been losing mass and retreating rapidly in the past three decades. Here we present a two-dimensional, Full-Stokes (FS) modeling study of the grounding line dynamics and iceberg calving of TG. First, we compare FS with two simplified models, the higher-order (HO) model and the shallow-shelf approximation (SSA) model, to determine the impact of changes in ice shelf basal melt rate on grounding line dynamics. Second, we combine FS with the Linear Elastic Fracture Mechanics (LEFM) theory to simulate crevasse propagation and iceberg calving. In the first experiment, we find that FS requires basal melt rate consistent with remote sensing observations to reach steady state at TG’s current geometry while HO and SSA require unrealistically high basal melt rate. The grounding line of FS is also more sensitive to changes in basal melt rate than HO and SSA. In the second experiment, we find that only FS can produce surface and bottom crevasses that match radar sounding observations of crevasse width and height. We attribute the difference to the non- hydrostatic conditions of ice near the grounding line, which facilitate crevasse formation and are not accounted for in HO and SSA. Additional experiments using FS indicate that iceberg calving is significantly enhanced when surface crevasses exist near the grounding line, when ice shelf is shortened, or when the ice shelf front is undercut. We conclude that FS yields substantial improvements in the description of ice flow dynamics at the grounding line under high basal melt rate and in constraining crevasse formation and iceberg calving.


2017 ◽  
Vol 11 (3) ◽  
pp. 1283-1296 ◽  
Author(s):  
Hongju Yu ◽  
Eric Rignot ◽  
Mathieu Morlighem ◽  
Helene Seroussi

Abstract. Thwaites Glacier (TG), West Antarctica, has been losing mass and retreating rapidly in the past few decades. Here, we present a study of its calving dynamics combining a two-dimensional flow-band full-Stokes (FS) model of its viscous flow with linear elastic fracture mechanics (LEFM) theory to model crevasse propagation and ice fracturing. We compare the results with those obtained with the higher-order (HO) and the shallow-shelf approximation (SSA) models coupled with LEFM. We find that FS/LEFM produces surface and bottom crevasses that are consistent with the distribution of depth and width of surface and bottom crevasses observed by NASA's Operation IceBridge radar depth sounder and laser altimeter, whereas HO/LEFM and SSA/LEFM do not generate crevasses that are consistent with observations. We attribute the difference to the nonhydrostatic condition of ice near the grounding line, which facilitates crevasse formation and is accounted for by the FS model but not by the HO or SSA models. We find that calving is enhanced when pre-existing surface crevasses are present, when the ice shelf is shortened or when the ice shelf front is undercut. The role of undercutting depends on the timescale of calving events. It is more prominent for glaciers with rapid calving rates than for glaciers with slow calving rates. Glaciers extending into a shorter ice shelf are more vulnerable to calving than glaciers developing a long ice shelf, especially as the ice front retreats close to the grounding line region, which leads to a positive feedback to calving events. We conclude that the FS/LEFM combination yields substantial improvements in capturing the stress field near the grounding line of a glacier for constraining crevasse formation and iceberg calving.


2002 ◽  
Vol 34 ◽  
pp. 217-227 ◽  
Author(s):  
Eric Rignot

AbstractThe velocity and mass discharge of nine major East Antarctic glaciers not draining into the Ross or Filchner–Ronne Ice Shelves is investigated using interferometric synthetic aperture radar (InSAR) data from the European Remote-sensing Satellite 1and 2 (ERS-1/2) andRADARSAT-1. The glaciers are: David,Ninnis, Mertz, Totten, Scott, Denman, Lambert, Shirase and Stancomb-Wills. InSAR is used to locate their grounding line with precision. Ice velocity is measured with either InSAR or a speckle-tracking technique. Ice thickness is deduced from prior-determined ice-shelf elevation assuming hydrostatic equilibrium. Mass fluxes are calculated both at the grounding line and at a flux gate located downstream. The grounding-line flux is compared to a mass input calculated from snow accumulation to deduce the glacier mass balance. The calculation is repeated at the flux gate downstream of the grounding line to estimate the average bottom melt rate of the ice shelf under steady-state conditions. The main results are: (1) Grounding lines are found several tens of km upstream of prior-identified positions, not because of a recent ice-sheet retreat but because of the inadequacy of prior-determined grounding-line positions. (2) No gross imbalance between outflow and inflow is detected on the nine glaciers being investigated, with an uncertainty of 10–20%. Prior-determined, largely positive mass imbalances were due to an incorrect localization of the grounding line. (3) High rates of bottom melting (24±7 mice a–1) are inferred near grounding zones, where ice reaches the deepest draft. A few glaciers exhibit lower bottom melt rates (4±7 mice a–1). Bottom melting, however, appears to be a major source of mass loss on Antarctic ice shelves.


2012 ◽  
Vol 6 (1) ◽  
pp. 469-503 ◽  
Author(s):  
C. Plate ◽  
R. Müller ◽  
A. Humbert ◽  
D. Gross

Abstract. The ongoing disintegration of large ice shelf parts in Antarctica raise the need for a better understanding of the physical processes that trigger critical crack growth in ice shelves. Finite elements in combination with configurational forces facilitate the analysis of single surface fractures in ice under various boundary conditions and material parameters. The principles of linear elastic fracture mechanics are applied to show the strong influence of different depth dependent functions for the density and the Young's modulus on the stress intensity factor KI at the crack tip. Ice, for this purpose, is treated as a compressible solid and the consequences of this choice in comparison to the predominant incompressible approaches is discussed. The computed stress intensity factors KI for dry and water filled cracks are compared with critical values KIc from measurements that can be found in literature.


2016 ◽  
Author(s):  
Hongju Yu ◽  
Eric Rignot ◽  
Mathieu Morlighem ◽  
Helene Seroussi

Abstract. Thwaites Glacier (TG), West Antarctica, has been losing mass and retreating rapidly in the past few decades. Here, we present a study of its calving dynamics combining a two-dimensional flowband Full Stokes (FS) model of its viscous flow with linear elastic fracture mechanics (LEFM) theory to model crevasse propagation and ice fracturing. We compare the results with those obtained with the higher-order (HO) and the shallow-shelf approximation (SSA) models coupled with LEFM. We find that FS/LEFM produces surface and bottom crevasses that match the distribution of crevasse depth and width observed from NASA's Operation IceBridge radar depth sounders, whereas HO/LEFM and SSA/LEFM do not generate crevasses that match observations. We attribute the difference to the non-hydrostatic condition of ice near the grounding line, which facilitates crevasse formation, and is accounted for by the FS model but not by the HO or SSA model. We also find that calving is enhanced when pre-existing surface crevasses are present, when the ice shelf is shortened or when the ice shelf front is undercut. The role of undercutting depends on the time scale of calving events. It is more prominent for glaciers with rapid calving rates than glaciers with slow calving rates. Glaciers extending into a shorter ice shelf are more vulnerable to calving than glaciers developing a long ice shelf, especially as the ice front retreats close to the grounding line region, which leads to a positive feedback. We conclude that the FS/LEFM combination yields substantial improvements in capturing the stress field near the grounding line for constraining crevasse formation and iceberg calving.


2020 ◽  
pp. 1-11
Author(s):  
Emily A. Hill ◽  
G. Hilmar Gudmundsson ◽  
J. Rachel Carr ◽  
Chris R. Stokes ◽  
Helen M. King

Abstract Ice shelves restrain flow from the Greenland and Antarctic ice sheets. Climate-ocean warming could force thinning or collapse of floating ice shelves and subsequently accelerate flow, increase ice discharge and raise global mean sea levels. Petermann Glacier (PG), northwest Greenland, recently lost large sections of its ice shelf, but its response to total ice shelf loss in the future remains uncertain. Here, we use the ice flow model Úa to assess the sensitivity of PG to changes in ice shelf extent, and to estimate the resultant loss of grounded ice and contribution to sea level rise. Our results have shown that under several scenarios of ice shelf thinning and retreat, removal of the shelf will not contribute substantially to global mean sea level (<1 mm). We hypothesize that grounded ice loss was limited by the stabilization of the grounding line at a topographic high ~12 km inland of its current grounding line position. Further inland, the likelihood of a narrow fjord that slopes seawards suggests that PG is likely to remain insensitive to terminus changes in the near future.


2011 ◽  
Vol 57 (204) ◽  
pp. 737-754 ◽  
Author(s):  
Christopher A. Shuman ◽  
Etienne Berthier ◽  
Ted A. Scambos

AbstractWe investigate the elevation and mass-balance response of tributary glaciers following the loss of the Larsen A and B ice shelves, Antarctic Peninsula (in 1995 and 2002 respectively). Our study uses MODIS imagery to track ice extent, and ASTER and SPOT5 digital elevation models (DEMs) plus ATM and ICESat laser altimetry to track elevation changes, spanning the period 2001–09. The measured Larsen B tributary glaciers (Hektoria, Green, Evans, Punchbowl, Jorum and Crane) lost up to 160 m in elevation during 2001–06, and thinning continued into 2009. Elevation changes were small for the more southerly Flask and Leppard Glaciers, which are still constrained by a Larsen B ice shelf remnant. In the northern embayment, continued thinning of >3 m a−1 on Drygalski Glacier, 14 years after the Larsen A ice shelf disintegrated, suggests that mass losses for the exposed Larsen B tributaries will continue for years into the future. Grounded ice volume losses exceed 13 km3 for Crane Glacier and 30 km3 for the Hektoria–Green–Evans glaciers. The combined mean loss rate for 2001–06 is at least 11.2 Gt a−1. Our values differ significantly from published mass-budget-based estimates for these embayments, but are a reasonable fraction of GRACE-derived rates for the region (∼40 Gt a−1).


2021 ◽  
Author(s):  
Jim Jordan ◽  
HIlmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris Stokes ◽  
Stewart Jamiesson ◽  
...  

&lt;div&gt;The buttressing strength of Antarctic ice shelves directly effects the amount of ice discharge across the grounding line, with buttressing strength affected by both the thickness and extent of an ice shelf. Recent work has shown that a reduction in ice-shelf buttressing due to ocean induced ice-shelf thinning is responsible for a significant portion of increased Antarctic ice discharge (Gudmundsson et al., 2019, but few studies have attempted to show the effect of variability in ice-shelf extent on ice discharge. This variability arises due to ice-shelf calving following a cycle of long periods of slow, continuous calving interposed with calving of large, discrete sections. &amp;#160;These discrete calving events tend to occur on a comparative timeframe to that of the observational record. As such, when determining observed changes in ice discharge it is crucial that this natural variability is separated from any observed trends. &amp;#160;&lt;/div&gt;&lt;div&gt;&amp;#160;&lt;/div&gt;&lt;div&gt;In this work we use the numerical ice-flow model &amp;#218;a in combination with observations of ice shelf extent to diagnostically calculate Antarctic ice discharge. These observations primarily date back to the 1970s, though for some ice shelves records exist back to the 1940s. We assemble an Antarctic wide model for two scenarios: 1) with ice shelves at their maximum observed extent and 2) with ice shelves at their minimum observed extent. We then compare these two scenarios to differences in the observed changes in Antarctic ice-discharge to determine how much can be attributed to natural variance .&lt;/div&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;span&gt;Gudmundsson, G. H.&lt;/span&gt;&lt;span&gt;,&amp;#160;Paolo, F. S.,&amp;#160;Adusumilli, S., &amp;&amp;#160;Fricker, H. A.&amp;#160;(2019).&amp;#160;&lt;/span&gt;Instantaneous Antarctic ice&amp;#8208;&amp;#160;sheet mass loss driven by thinning ice shelves.&amp;#160;&lt;em&gt;Geophysical Research Letters&lt;/em&gt;,&amp;#160;46,&amp;#160;13903&amp;#8211;&amp;#160;13909.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document