scholarly journals 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula

2011 ◽  
Vol 57 (204) ◽  
pp. 737-754 ◽  
Author(s):  
Christopher A. Shuman ◽  
Etienne Berthier ◽  
Ted A. Scambos

AbstractWe investigate the elevation and mass-balance response of tributary glaciers following the loss of the Larsen A and B ice shelves, Antarctic Peninsula (in 1995 and 2002 respectively). Our study uses MODIS imagery to track ice extent, and ASTER and SPOT5 digital elevation models (DEMs) plus ATM and ICESat laser altimetry to track elevation changes, spanning the period 2001–09. The measured Larsen B tributary glaciers (Hektoria, Green, Evans, Punchbowl, Jorum and Crane) lost up to 160 m in elevation during 2001–06, and thinning continued into 2009. Elevation changes were small for the more southerly Flask and Leppard Glaciers, which are still constrained by a Larsen B ice shelf remnant. In the northern embayment, continued thinning of >3 m a−1 on Drygalski Glacier, 14 years after the Larsen A ice shelf disintegrated, suggests that mass losses for the exposed Larsen B tributaries will continue for years into the future. Grounded ice volume losses exceed 13 km3 for Crane Glacier and 30 km3 for the Hektoria–Green–Evans glaciers. The combined mean loss rate for 2001–06 is at least 11.2 Gt a−1. Our values differ significantly from published mass-budget-based estimates for these embayments, but are a reasonable fraction of GRACE-derived rates for the region (∼40 Gt a−1).

2014 ◽  
Vol 8 (6) ◽  
pp. 2135-2145 ◽  
Author(s):  
T. A. Scambos ◽  
E. Berthier ◽  
T. Haran ◽  
C. A. Shuman ◽  
A. J. Cook ◽  
...  

Abstract. The northern Antarctic Peninsula (nAP, < 66° S) is one of the most rapidly changing glaciated regions on earth, yet the spatial patterns of its ice mass loss at the glacier basin scale have to date been poorly documented. We use satellite laser altimetry and satellite stereo-image topography spanning 2001–2010, but primarily 2003–2008, to map ice elevation change and infer mass changes for 33 glacier basins covering the mainland and most large islands in the nAP. Rates of ice volume and ice mass change are 27.7± 8.6 km3 a−1 and 24.9± 7.8 Gt a−1, equal to −0.73 m a−1 w.e. for the study area. Mass loss is the highest for eastern glaciers affected by major ice shelf collapses in 1995 and 2002, where twelve glaciers account for 60% of the total imbalance. However, losses at smaller rates occur throughout the nAP, at both high and low elevation, despite increased snow accumulation along the western coast and ridge crest. We interpret the widespread mass loss to be driven by decades of ice front retreats on both sides of the nAP, and extended throughout the ice sheet due to the propagation of kinematic waves triggered at the fronts into the interior.


2010 ◽  
Vol 51 (55) ◽  
pp. 97-102 ◽  
Author(s):  
J. Wendt ◽  
A. Rivera ◽  
A. Wendt ◽  
F. Bown ◽  
R. Zamora ◽  
...  

AbstractRegional climate warming has caused several ice shelves on the Antarctic Peninsula to retreat and ultimately collapse during recent decades. Glaciers flowing into these retreating ice shelves have responded with accelerating ice flow and thinning. The Wordie Ice Shelf on the west coast of the Antarctic Peninsula was reported to have undergone a major areal reduction before 1989. Since then, this ice shelf has continued to retreat and now very little floating ice remains. Little information is currently available regarding the dynamic response of the glaciers feeding the Wordie Ice Shelf, but we describe a Chilean International Polar Year project, initiated in 2007, targeted at studying the glacier dynamics in this area and their relationship to local meteorological conditions. Various data were collected during field campaigns to Fleming Glacier in the austral summers of 2007/08 and 2008/09. In situ measurements of ice-flow velocity first made in 1974 were repeated and these confirm satellite-based assessments that velocity on the glacier has increased by 40–50% since 1974. Airborne lidar data collected in December 2008 can be compared with similar data collected in 2004 in collaboration with NASA and the Chilean Navy. This comparison indicates continued thinning of the glacier, with increasing rates of thinning downstream, with a mean of 4.1 ± 0.2 m a−1 at the grounding line of the glacier. These comparisons give little indication that the glacier is achieving a new equilibrium.


2013 ◽  
Vol 7 (3) ◽  
pp. 797-816 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


2013 ◽  
Vol 7 (1) ◽  
pp. 373-417 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to on-going atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


2004 ◽  
Vol 39 ◽  
pp. 557-562 ◽  
Author(s):  
Pedro Skvarca ◽  
Hernán De Angelis ◽  
Andrés F. Zakrajsek

AbstractFollowing the collapse of Larsen A in 1995, about 3200 km2 of Larsen B ice shelf disintegrated in early 2002 during the warmest summer recorded on the northeastern Antarctic Peninsula. Immediately prior to disintegration the last field campaign was carried out on Larsen B. Measurements included surface net mass balance, velocity and strain rate on a longitudinal transect along Crane Glacier flowline and over a remnant section confined within Seal Nunataks that survived the collapse. In addition, an automatic weather station located nearby allowed derivation of melt days relevant to the formation and extent of surface meltwater. Repeated surveys allowed us to detect a significant acceleration in ice-flow velocity and associated increasing strain rates along the longitudinal transect. It may be possible to use this acceleration as a predictor of imminent ice-shelf collapse, applicable to ice shelves subject to similar climatic conditions. Additional information on recent ongoing changes was provided by a visible satellite image acquired in early 2003.


1993 ◽  
Vol 17 ◽  
pp. 211-218 ◽  
Author(s):  
D.G. Vaughan ◽  
D.R. Mantripp ◽  
J. Sievers ◽  
C.S.M. Doake

Wilkins Ice Shelf has an area of 16000 km2 and lies off the west coast of the Antarctic Peninsula bounded by Alexander, Latady, Charcot and Rothschild islands. Several ice shelves, including Wilkins, exist close to a climatic limit of viability. The recent disintegration of the neighbouring Wordie Ice Shelf has been linked to atmopsheric warming observed on the Antarctic Peninsula. The limit of ice-shelf viability thus appears to have migrated south. Should this continue, the question arises; how long will Wilkins Ice Shelf survive?Compared with the other ice shelves on the Antarctic Peninsula, few surface glaciological data have been collected on Wilkins Ice Shelf. We compare, contrast and combine a variety of remotely sensed data: the recently declassified GEOSAT Geodetic Mission altimetry, Landsat MSS and TM imagery, and radio-echo sounding data (RES), to study its structure and mass balance regime.We find that this shelf has an unusual mass balance regime and relies heavily for sustenance on in situ accumulation. Its response to a continued atmospheric warming may be significantly different from that of Wordie Ice Shelf. Wordie Ice Shelf was fed by several dynamic outlet glaciers which accelerated the disintegration process when the ice shelf fractured. Wilkins Ice Shelf by contrast is almost stagnant and is expected to respond by normal calving at the ice front. Changes in the accumulation rate or basal melt-rate may, however, dominate any dynamic effect. Over the last two decades the ice front positions have remained stable.


2001 ◽  
Vol 13 (3) ◽  
pp. 296-301 ◽  
Author(s):  
C. Hjort ◽  
M.J. Bentley ◽  
Ó. Ingólfsson

We present evidence for the absence of the George VI Ice Shelf during a brief period in the mid-Holocene and during one or more earlier interstadials or interglacials. Barnacle Bathylasma corolliforme shells sampled from ice shelf moraines at Two Step Cliffs on Alexander Island have been dated to c, 5750–6000 14C yr BP(c. 6550–6850 cal yr BP) and imply seasonally open water in the George VI Sound during this period. Other shells are beyond the range of radiocarbon dating and imply open water during one or more previous interglacial or interstadial period, prior to 40 000 14C yr BP. Our results show that the ongoing collapse of some Antarctic Peninsula ice shelves is not unprecedented.


1984 ◽  
Vol 30 (106) ◽  
pp. 289-295 ◽  
Author(s):  
John M. Reynolds ◽  
J. G. Paren

AbstractGeoresistivity soundings have been carried out at four sites in the Antarctic Peninsula. The objective of the work was to investigate the electrical behaviour of ice from an area where substantial melting occurs in summer and from contrasting thermal regimes. Electrical measurements made at three sites along a flow line within George VI Ice Shelf reveal that:(a)the resistivity of deep ice is similar to that of other Antarctic ice shelves,(b)the resistivity of the ice-shelf surface, which is affected by the percolation and refreezing of melt water, is similar to that of deep ice and hence the ice is polar in character.A compilation of published resistivities of deep ice from polar regions shows that the range of resistivities is very narrow (0.4 –2.0) x 105Ω m between –2 and – 29°C, irrespective of the physical setting and history of the ice. Typically, resistivity is within a factor of two of 80 kΩ m at –20° C with an activation energy of 0.22 eV. In contrast, the resistivity of surface ice at Wormald Ice Piedmont, where the ice is at 0°C throughout, is two orders of magnitude higher and falls at the lower end of the range of resistivities for temperate ice.


2020 ◽  
Author(s):  
Frazer Christie ◽  
Toby Benham ◽  
Julian Dowdeswell

&lt;p&gt;The Antarctic Peninsula is one of the most rapidly warming regions on Earth. There, the recent destabilization of the Larsen A and B ice shelves has been directly attributed to this warming, in concert with anomalous changes in ocean circulation. Having rapidly accelerated and retreated following the demise of Larsen A and B, the inland glaciers once feeding these ice shelves now form a significant proportion of Antarctica&amp;#8217;s total contribution to global sea-level rise, and have become an exemplar for the fate of the wider Antarctic Ice Sheet under a changing climate. Together with other indicators of glaciological instability observable from satellites, abrupt pre-collapse changes in ice shelf terminus position are believed to have presaged the imminent disintegration of Larsen A and B, which necessitates the need for routine, close observation of this sector in order to accurately forecast the future stability of the Antarctic Peninsula Ice Sheet. To date, however, detailed records of ice terminus position along this region of Antarctica only span the observational period c.1950 to 2008, despite several significant changes to the coastline over the last decade, including the calving of giant iceberg A-68a from Larsen C Ice Shelf in 2017.&lt;/p&gt;&lt;p&gt;Here, we present high-resolution, annual records of ice terminus change along the entire western Weddell Sea Sector, extending southwards from the former Larsen A Ice Shelf on the eastern Antarctic Peninsula to the periphery of Filchner Ice Shelf. Terminus positions were recovered primarily from Sentinel-1a/b, TerraSAR-X and ALOS-PALSAR SAR imagery acquired over the period 2009-2019, and were supplemented with Sentinel-2a/b, Landsat 7 ETM+ and Landsat 8 OLI optical imagery across regions of complex terrain.&lt;/p&gt;&lt;p&gt;Confounding Antarctic Ice Sheet-wide trends of increased glacial recession and mass loss over the long-term satellite era, we detect glaciological advance along 83% of the ice shelves fringing the eastern Antarctic Peninsula between 2009 and 2019. With the exception of SCAR Inlet, where the advance of its terminus position is attributable to long-lasting ice dynamical processes following the disintegration of Larsen B, this phenomenon lies in close agreement with recent observations of unchanged or arrested rates of ice flow and thinning along the coastline. Global climate reanalysis and satellite passive-microwave records reveal that this spatially homogenous advance can be attributed to an enhanced buttressing effect imparted on the eastern Antarctic Peninsula&amp;#8217;s ice shelves, governed primarily by regional-scale increases in the delivery and concentration of sea ice proximal to the coastline.&lt;/p&gt;


2010 ◽  
Vol 51 (55) ◽  
pp. 41-48 ◽  
Author(s):  
Fuyuki Saito ◽  
Ayako Abe-Ouchi

AbstractNumerical experiments are performed for the Antarctic ice sheet to study the sensitivity of the ice volume to variations in the area of grounded ice and to changes in the climate during the most recent deglaciation. The effect of the variations in the grounded area is found to be the major source of changes in the ice volume, while the effect of climate change was minor. The maximum possible contribution of the ice-volume change to sea-level rise during the deglaciation is estimated to be 36 m, which covers most values estimated in previous studies. The effect of the advance of the ice-sheet margin over those regions not connected to the major ice shelves contributes one-third of the total ice-volume change, which is comparable to the effect of the grounding of the Filchner–Ronne Ice Shelf and the contribution of the Ross and Amery Ice Shelves together.


Sign in / Sign up

Export Citation Format

Share Document