scholarly journals Model updating of a wind turbine blade finite element beam model with invertible neural networks

2021 ◽  
Author(s):  
Pablo Noever-Castelos ◽  
David Melcher ◽  
Claudio Balzani

Abstract. Digitalization, especially in the form of a digital twin, is fast becoming a key instrument for the monitoring of a product's life cycle from manufacturing to operation and maintenance, and has recently been applied to wind turbine blades. Here, model updating plays an important role for digital twins, in the form of adjusting the model to best replicate the corresponding real-world counterpart. However, classical updating methods are generally limited to a reduced parameter space due to low computational efficiency. Moreover, these approaches most likely lack a probabilistic evaluation of the result. The purpose of this paper is to extend a previous feasibility study to a finite element beam model of a full blade, for which the model updating process is conducted through the novel approach with invertible neural networks (INNs). This type of artificial neural network is trained to represent an inversion of the physical model, which in general is complex and non-linear. During the updating process, the inverse model is evaluated based on the target model's modal responses, which then returns the posterior prediction for the input parameters. In advance, a global sensitivity study will reduce the parameter space to a significant subset, on which the updating process will focus. The finally trained INN excellently predicts the input parameters' posterior distributions of the proposed generic updating problem. Moreover, intrinsic model ambiguities, such as material densities of two closely located laminates, are correctly captured. A robustness analysis with noisy response reveals a few sensitive parameters, though most can still be recovered with equal accuracy. And, finally, after the resimulation analysis with the updated model, the modal response perfectly matches the target values. Thus, we successfully confirmed that INNs offer an extraordinary capability for structural model updating of even more complex and larger models of wind turbine blades.

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
M. Tarfaoui ◽  
O. R. Shah ◽  
M. Nachtane

In order to obtain an optimal design of composite offshore wind turbine blade, take into account all the structural properties and the limiting conditions applied as close as possible to real cases. This work is divided into two stages: the aerodynamic design and the structural design. The optimal blade structural configuration was determined through a parametric study by using a finite element method. The skin thickness, thickness and width of the spar flange, and thickness, location, and length of the front and rear spar web were varied until design criteria were satisfied. The purpose of this article is to provide the designer with all the tools required to model and optimize the blades. The aerodynamic performance has been covered in this study using blade element momentum (BEM) method to calculate the loads applied to the turbine blade during service and extreme stormy conditions, and the finite element analysis was performed by using abaqus code to predict the most critical damage behavior and to apprehend and obtain knowledge of the complex structural behavior of wind turbine blades. The approach developed based on the nonlinear finite element analysis using mean values for the material properties and the failure criteria of Hashin to predict failure modes in large structures and to identify the sensitive zones.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
V. García ◽  
L. Vargas ◽  
A. Acuña ◽  
J. B. Sosa ◽  
E. Durazo ◽  
...  

Here we use finite element analysis to determine the suitability of basalt fiber as a substitute for E-glass in structural applications, which would improve the cost effectiveness of small wind turbine blades. Five NACA (National Advisory Committee for Aeronautics) profiles were evaluated to select the optimum shape for the wind operation conditions. To obtain the wind load pressure distribution over the blade, a computational aerodynamic analysis by CFD (computational fluid dynamics) was performed based on the blade’s design and operating conditions. Material properties and mechanical tests were carried out to obtain the fiber volume fraction, density, Young’s modulus, shear modulus, and Poisson relation of polymeric matrix composites made using basalt and fiberglass. The obtained wind loads and material properties were used on a FEM (finite element model) analysis to evaluate the structural behavior of the blade under normal and critical operating conditions. Both fibers meet the structural requirements under normal operating conditions. We detected a reduction of 4% in the blade stress when basalt fibers are used instead of glass fibers, and a reduction of 68% in the total deformation for a critical load case of 40 m/s was obtained when using basalt fibers, which met the structural requirements and maximum power generation required for this wind turbine design.


Sign in / Sign up

Export Citation Format

Share Document