scholarly journals On sensor optimisation for structural health monitoring robust to environmental variations

2021 ◽  
Vol 6 (5) ◽  
pp. 1107-1116
Author(s):  
Tingna Wang ◽  
David J. Wagg ◽  
Keith Worden ◽  
Robert J. Barthorpe

Abstract. Structural health monitoring (SHM) is often approached from a statistical pattern recognition or machine learning perspective with the aim of inferring the health state of a structure using data derived from a network of sensors placed upon it. In this paper, two SHM sensor placement optimisation (SPO) strategies that offer robustness to environmental effects are developed and evaluated. The two strategies both involve constructing an objective function (OF) based upon an established damage classification technique and an optimisation of sensor locations using a genetic algorithm (GA). The key difference between the two strategies explored here is in whether any sources of benign variation are deemed to be observable or not. The relative performances of both strategies are demonstrated using experimental data gathered from a glider wing tested in an environmental chamber, with the structure tested in different health states across a series of controlled temperatures.

2021 ◽  
Author(s):  
Tingna Wang ◽  
David J. Wagg ◽  
Keith Worden ◽  
Robert J. Barthorpe

Abstract. Structural health monitoring (SHM) is often approached from a statistical pattern recognition or machine learning perspective with the aim of inferring the health state of a structure using data derived from a network of sensors placed upon it. In this paper, two SHM sensor placement optimisation (SPO) strategies that offer robustness to environmental effects are developed and evaluated. The two strategies both involve constructing an objective function (OF) based upon an established damage classification technique and an optimisation of sensor locations using a genetic algorithm (GA). The key difference between the two strategies explored here is in whether any sources of benign variation are deemed to be observable or not. The relative performances of both strategies are demonstrated using experimental data gathered from a glider wing tested in an environmental chamber, with the structure tested in different health states across a series of controlled temperatures.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 110 ◽  
Author(s):  
Shao-Fei Jiang ◽  
Ze-Hui Qiao ◽  
Ni-Lei Li ◽  
Jian-Bin Luo ◽  
Sheng Shen ◽  
...  

Due to the long-term service, Chinese ancient timber buildings show varying degrees of wear. Thus, structural health monitoring (SHM) for these cultural and historical treasures is desperately needed to evaluate the service status. Although there are some FBG sensing-based SHM systems, they are not suitable for Chinese ancient timber buildings due to the differences in architectural types, structural loads, materials, and environment. Besides, a technical gap in Fiber Bragg grating (FBG) sensing-based column inclination monitoring exists. To overcome these weaknesses, this paper develops an FBG sensing-based structural health monitoring system for Chinese ancient Chuan-dou-type timber buildings that aims at monitoring structural deformation, i.e., beam deflection and column inclination, temperature, humidity, and fire around the building. An in-situ test and simulation analyses were conducted to verify the effectiveness of the developed SHM system. To validate the long-term-operation of the developed SHM system, monitoring data within 15 months were analyzed. The results show good agreement between the developed SHM system in this paper and other methods. In addition, the SHM system operated well in the first year after its deployment. This implies that the developed SHM system is applicable and effective in the health state monitoring of Chinese ancient Chuan-dou-type timber buildings, laying a foundation for damage prognosis of such types of timber buildings.


2017 ◽  
Vol 17 (2) ◽  
pp. 410-419 ◽  
Author(s):  
Patrik Fröjd ◽  
Peter Ulriksen

Diffuse ultrasonic wave measurements used in structural health monitoring applications can detect damage in concrete. However, the accuracy is very susceptible to environmental variations. In this study, a large concrete floor slab was monitored using diffuse wave fields that were generated by continuous-wave transmissions between ultrasonic transducers. The slab was monitored for several weeks while being subjected to changes in environmental conditions. Subsequently, it was damaged using impact hits, resulting in centimeter-scale cracking. The variations caused by the environment masked the effects of the damage in the measurements. To address this issue, the Mahalanobis distance was used to distinguish between the influence of the damage and the influence of the environmental variations. The Mahalanobis model uses amplitude and phase measurements of continuous waves at a set of different frequencies as inputs. A moving window approach was applied to the baseline data set to account for slow trends. This study shows that this technique greatly suppresses most of the variations caused by environmental conditions. All damage events in our data set have been detected.


2006 ◽  
Vol 13 (4-5) ◽  
pp. 519-530 ◽  
Author(s):  
Charles R. Farrar ◽  
David W. Allen ◽  
Gyuhae Park ◽  
Steven Ball ◽  
Michael P. Masquelier

The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). The authors' approach is to address the SHM problem in the context of a statistical pattern recognition paradigm. In this paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction and Data Compression, and (4) Statistical Model Development for Feature Discrimination. These processes must be implemented through hardware or software and, in general, some combination of these two approaches will be used. This paper will discuss each portion of the SHM process with particular emphasis on the coupling of a general purpose data interrogation software package for structural health monitoring with a modular wireless sensing and processing platform. More specifically, this paper will address the need to take an integrated hardware/software approach to developing SHM solutions.


2019 ◽  
Vol 19 (1) ◽  
pp. 305-321
Author(s):  
Marc Rébillat ◽  
Nazih Mechbal

Monitoring in real time and autonomously the health state of aeronautic structures is referred to as structural health monitoring and is a process decomposed in four steps: damage detection, localization, classification, and quantification. In this work, the structures under study are aeronautic geometrically complex structures equipped with a bonded piezoelectric network. When interrogating such a structure, the resulting data lie along three dimensions (namely, the “actuator,”“sensor,” and “time” dimensions) and can thus be interpreted as three-way tensors. The fact that Lamb wave structural health monitoring–based data are naturally three-way tensors is here investigated for damage localization purpose. In this article, it is demonstrated that under classical assumptions regarding wave propagation, the canonical polyadic decomposition of rank 2 of the tensors build from the phase and amplitude of the difference signals between a healthy and damaged states provides direct access to the distances between the piezoelectric elements and damage. This property is used here to propose an original tensor-based damage localization algorithm. This algorithm is successfully validated on experimental data coming from a scale one part of an airplane nacelle (1.5 m in height for a semi circumference of 4 m) equipped with 30 piezoelectric elements and many stiffeners. Obtained results demonstrate that the tensor-based localization algorithm can locate a damage within this structure with an average precision of 10 cm and with a precision lower than 1 cm at best. In comparison with standard damage localization algorithms (delay-and-sum, reconstruction algorithm for probabilistic inspection of defects, and ellipse- or hyperbola-based algorithms), the proposed algorithm appears as more precise and robust on the investigated cases. Furthermore, it is important to notice that this algorithm only takes the raw signals as inputs and that no specific pre-processing steps or finely tuned external parameters are needed. This algorithm is thus very appealing as reliable and easy to settle damage localization timeliness with low false alarm rates are one of the key successes to shorten the gap between research and industrial deployment of structural health monitoring processes.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2328 ◽  
Author(s):  
Alireza Entezami ◽  
Hassan Sarmadi ◽  
Behshid Behkamal ◽  
Stefano Mariani

Recent advances in sensor technologies and data acquisition systems opened up the era of big data in the field of structural health monitoring (SHM). Data-driven methods based on statistical pattern recognition provide outstanding opportunities to implement a long-term SHM strategy, by exploiting measured vibration data. However, their main limitation, due to big data or high-dimensional features, is linked to the complex and time-consuming procedures for feature extraction and/or statistical decision-making. To cope with this issue, in this article we propose a strategy based on autoregressive moving average (ARMA) modeling for feature extraction, and on an innovative hybrid divergence-based method for feature classification. Data relevant to a cable-stayed bridge are accounted for to assess the effectiveness and efficiency of the proposed method. The results show that the offered hybrid divergence-based method, in conjunction with ARMA modeling, succeeds in detecting damage in cases strongly characterized by big data.


Sign in / Sign up

Export Citation Format

Share Document