scholarly journals Tracking suspected heroin overdoses in CDC's National Syndromic Surveillance Program

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Alana M. Vivolo-Kantor ◽  
R. Matthew Gladden ◽  
Aaron Kite-Powell ◽  
Michael Coletta ◽  
Grant Baldwin

ObjectiveThis paper analyzes emergency department syndromic data in the Centers for Disease Control and Prevention’s (CDC) National Syndromic Surveillance Program’s (NSSP) BioSense Platform to understand trends in suspected heroin overdose.IntroductionOverdose deaths involving opioids (i.e., opioid pain relievers and illicit opioids such as heroin) accounted for at least 63% (N = 33,091) of overdose deaths in 2015. Overdose deaths related to illicit opioids, heroin and illicitly-manufactured fentanyl, have rapidly increased since 2010. For instance, heroin overdose deaths quadrupled from 3,036 in 2010 to 12,989 in 2015. Unfortunately, timely response to emerging trends is inhibited by time lags for national data on both overdose mortality via vital statistics (8-12 months) and morbidity via hospital discharge data (over 2 years). Emergency department (ED) syndromic data can be leveraged to respond more quickly to emerging drug overdose trends as well as identify drug overdose outbreaks. CDC’s NSSP BioSense Platform collects near real-time ED data on approximately two-thirds of ED visits in the US. NSSP’s data analysis and visualization tool, Electronic Surveillance System for the Notification of Community-based Epidemics (ESSENCE), allows for tailored syndrome queries and can monitor ED visits related to heroin overdose at the local, state, regional, and national levels quicker than hospital discharge data.MethodsWe analyzed ED syndromic data using ESSENCE to detect monthly and annual trends in suspected unintentional or undetermined heroin overdose by sex and region for those 11 years and older. An ED visit was categorized as a suspected heroin overdose if it met several criteria, including heroin overdose ICD-9-CM and ICD-10-CM codes (i.e., 965.01 and E850.0; T40.1X1A, T40.1X4A) and chief complaint text associated with a heroin overdose (e.g., “heroin overdose”). Using computer code developed specifically for ESSENCE based on our case definition, we queried data from 9 of the 10 HHS regions from July 2016-July 2017. One region was excluded due to large changes in data submitted during the time period. We conducted trend analyses using the proportion of suspected heroin overdoses by total ED visits for a given month with all sexes and regions combined and then stratified by sex and region. To determine significant linear changes in monthly and annual trends, we used the National Cancer Institute’s Joinpoint Regression Program.ResultsFrom July 2016-July 2017, over 72 million total ED visits were captured from all sites and jurisdictions submitting data to NSSP. After applying our case definition to these records, 53,786 visits were from a suspected heroin overdose, which accounted for approximately 7.5 heroin overdose visits per 10,000 total ED visits during that timeframe. The rate of suspected heroin overdose visits to total ED visits was highest in June 2017 (8.7 per 10,000) and lowest in August 2016 (6.6 per 10,000 visits). Males accounted for a larger rates of visits over all months (range = 10.7 to 14.2 per 10,000 visits) than females (range = 3.8 to 4.7 per 10,000 visits). Overall, compared to July 2016, suspected heroin overdose ED visits from July 2017 were significantly higher for all sexes and US regions combined (β = .010, p = .036). Significant increases were also demonstrated over time for males (β = .009, p = .044) and the Northeast (β = .012, p = .025). No other significant increases or decreases were detected by demographics or on a monthly basis.ConclusionsEmergency department visits related to heroin overdose increased significantly from July 2016 to July 2017, with significant increases in the Northeast and among males. Urgent public health action is needed reduce heroin overdoses including increasing the availability of naloxone (an antidote for opioid overdose), linking people at high risk for heroin overdose to medication-assisted treatment, and reducing misuse of opioids by implementing safer opioid prescribing practices. Despite these findings, there are several limitations of these data: not all states sharing data have full participation thus limiting the representativeness of the data; not all ED visits are shared with NSSP; and our case definition may under-identify (e.g., visits missing discharge diagnosis codes and lacking specificity in chief complaint text) or over-identify (e.g., reliance on hospital staff impression and not drug test results) heroin overdose visits. Nonetheless, ED syndromic surveillance data can provide timely insight into emerging regional and national heroin overdose trends.ReferencesWarner M, Chen LH, Makuc DM, Anderson RN, Minino AM. Drug poisoning deaths in the United States, 1980-2008. NCHS Data Brief 2011(81):1-8.Rudd RA, Seth P, David F, Scholl L. Increases in Drug and Opioid-Involved Overdose Deaths - United States, 2010-2015. MMWR Morb Mortal Wkly Rep 2016;65(5051):1445-1452.Spencer MRA, F. Timeliness of Death Certificate Data for Mortality Surveillance and Provisional Estimates. National Center for Health Statistics 2017.Richards CL, Iademarco MF, Atkinson D, Pinner RW, Yoon P, Mac Kenzie WR, et al. Advances in Public Health Surveillance and Information Dissemination at the Centers for Disease Control and Prevention. Public Health Rep 2017;132(4):403-410.

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Emery Shekiro ◽  
Lily Sussman ◽  
Talia Brown

Objective: In order to better describe local drug-related overdoses, we developed a novel syndromic case definition using discharge diagnosis codes from emergency department data in the Colorado North Central Region (CO-NCR). Secondarily, we used free text fields to understand the use of unspecified diagnosis fields.Introduction: The United States is in the midst of a drug crisis; drug-related overdoses are the leading cause of unintentional death in the country. In Colorado the rate of fatal drug overdose increased 68% from 2002-2014 (9.7 deaths per 100,000 to 16.3 per 100,000, respectively)1, and non-fatal overdose also increased during this time period (23% increase in emergency department visits since 2011)2. The CDC’s National Syndromic Surveillance Program (NSSP) provides near-real time monitoring of emergency department (ED) events across the country, with information uploaded daily on patient demographics, chief complaint for visit, diagnosis codes, triage notes, and more. Colorado North Central Region (CO-NCR) receives data for 4 local public health agencies from 25 hospitals across Adams, Arapahoe, Boulder, Denver, Douglas, and Jefferson Counties.Access to local syndromic data in near-real time provides valuable information for local public health program planning, policy, and evaluation efforts. However, use of these data also comes with many challenges. For example, we learned from key informant interviews with ED staff in Boulder and Denver counties, about concern with the accuracy and specificity of drug-related diagnosis codes, specifically for opioid-related overdoses.Methods: Boulder County Public Health (BCPH) and Denver Public Health (DPH) developed a query in Early Notification of Community Based Epidemics (ESSENCE) using ICD-10-CM codes to identify cases of drug-related overdose [T36-T51] from October 2016 to September 2017. The Case definition included unintentional, self-harm, assault and undetermined poisonings, but did not include cases coded as adverse effects or underdosing of medication. Cases identified in the query were stratified by demographic factors (i.e., gender and age) and substance used in poisoning. The first diagnosis code in the file was considered the primary diagnosis. Chief complaint and triage note fields were examined to further describe unspecified cases and to describe how patients present to emergency departments in the CO-NCR. We also explored whether detection of drug overdose visits captured by discharge diagnosis data varied by patient sex, age, or county.Results: The query identified 2,366 drug-related overdoses in the CO-NCR. The prevalence of drug overdoses differed across age groups. The detection of drug overdoses was highest among our youth and young adult populations; 16 to 20 year olds (16.0%), 21-25 year olds (11.4%), 26-30 year olds (11.4%). Females comprised 56.1% of probable general drug overdoses. The majority of primary diagnoses (31.0%) included poisonings related to diuretics and other unspecified drugs (T50), narcotics (T40) (12.6%), or non-opioid analgesics (T39) (7.8%). For some cases with unspecified drug overdose codes there was additional information about drugs used and narcan administration found in the triage notes and chief complaint fields.Conclusions: Syndromic surveillance offers the opportunity to capture drug-related overdose data in near-real time. We found variation in drug-related overdose by demographic groups. Unspecified drug overdose codes are extremely common, which likely negatively impacts the quality of drug-specific surveillance. Leveraging chief complaint and triage notes could improve our understanding of factors involved in drug-related overdose with limitations in discharge diagnosis. Chart reviews and access to more fields from the ED electronic health record could improve local drug surveillance.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Marissa L. Zwald ◽  
Kristin M. Holland ◽  
Francis Annor ◽  
Aaron Kite-Powell ◽  
Steven A. Sumner ◽  
...  

ObjectiveTo describe epidemiological characteristics of emergency department (ED) visits related to suicidal ideation (SI) or suicidal attempt (SA) using syndromic surveillance data.IntroductionSuicide is a growing public health problem in the United States.1 From 2001 to 2016, ED visit rates for nonfatal self-harm, a common risk factor for suicide, increased 42%.2–4 To improve public health surveillance of suicide-related problems, including SI and SA, the Data and Surveillance Task Force within the National Action Alliance for Suicide Prevention recommended the use of real-time data from hospital ED visits.5 The collection and use of real-time ED visit data on SI and SA could support a more targeted and timely public health response to prevent suicide.5 Therefore, this investigation aimed to monitor ED visits for SI or SA and to identify temporal, demographic, and geographic patterns using data from CDC’s National Syndromic Surveillance Program (NSSP).MethodsCDC’s NSSP data were used to monitor ED visits related to SI or SA among individuals aged 10 years and older from January 1, 2016 through July 31, 2018. A syndrome definition for SI or SA, developed by the International Society for Disease Surveillance’s syndrome definition committee in collaboration with CDC, was used to assess SI or SA-related ED visits. The syndrome definition was based on querying the chief complaint history, discharge diagnosis, and admission reason code and description fields for a combination of symptoms and Boolean operators (for example, hang, laceration, or overdose), as well as ICD-9-CM, ICD-10-CM, and SNOMED diagnostic codes associated with SI or SA. The definition was also developed to include common misspellings of self-harm-related terms and to exclude ED visits in which a patient “denied SI or SA.”The percentage of ED visits involving SI or SA were analyzed by month and stratified by sex, age group, and U.S. region. This was calculated by dividing the number of SI or SA-related ED visits by the total number of ED visits in each month. The average monthly percentage change of SI or SA overall and for each U.S. region was also calculated using the Joinpoint regression software (Surveillance Research Program, National Cancer Institute).6ResultsAmong approximately 259 million ED visits assessed in NSSP from January 2016 to July 2018, a total of 2,301,215 SI or SA-related visits were identified. Over this period, males accounted for 51.2% of ED visits related to SI or SA, and approximately 42.1% of SI or SA-related visits were comprised of patients who were 20-39 years, followed by 40-59 years (29.7%), 10-19 years (20.5%), and ≥60 years (7.7%).During this period, the average monthly percentage of ED visits involving SI or SA significantly increased 1.1%. As shown in Figure 1, all U.S. regions, except for the Southwest region, experienced significant increases in SI or SA ED visits from January 2016 to July 2018. The average monthly increase of SI or SA-related ED visits was 1.9% for the Midwest, 1.5% for the West (1.5%), 1.1% for the Northeast, 0.9% for the Southeast, and 0.5% for the Southwest.ConclusionsED visits for SI or SA increased from January 2016 to June 2018 and varied by U.S. region. In contrast to previous findings reporting data from the National Electronic Injury Surveillance Program – All-Injury Program, we observed different trends in SI or SA by sex, where more ED visits were comprised of patients who were male in our investigation.2 Syndromic surveillance data can fill an existing gap in the national surveillance of suicide-related problems by providing close to real-time information on SI or SA-related ED visits.5 However, our investigation is subject to some limitations. NSSP data is not nationally representative and therefore, these findings are not generalizable to areas not participating in NSSP. The syndrome definition may under-or over-estimate SI or SA based on coding differences and differences in chief complaint or discharge diagnosis data between jurisdictions. Finally, hospital participation in NSSP can vary across months, which could potentially contribute to trends observed in NSSP data. Despite these limitations, states and communities could use this type of surveillance data to detect abnormal patterns at more detailed geographic levels and facilitate rapid response efforts. States and communities can also use resources such as CDC’s Preventing Suicide: A Technical Package of Policy, Programs, and Practices to guide prevention decision-making and implement comprehensive suicide prevention approaches based on the best available evidence.7References1. Stone DM, Simon TR, Fowler KA, et al. Vital Signs: Trends in State Suicide Rates — United States, 1999–2016 and Circumstances Contributing to Suicide — 27 States, 2015. Morb Mortal Wkly Rep. 2018;67(22):617-624.2. CDCs National Center for Injury Prevention and Control. Web-based Injury Statistics Query and Reporting System (WISQARS). https://www.cdc.gov/injury/wisqars/index.html. Published 2018. Accessed September 1, 2018.3. Mercado M, Holland K, Leemis R, Stone D, Wang J. Trends in emergency department visits for nonfatal self-inflicted injuries among youth aged 10 to 24 years in the United States, 2005-2015. J Am Med Assoc. 2017;318(19):1931-1933. doi:10.1001/jama.2017.133174. Olfson M, Blanco C, Wall M, et al. National Trends in Suicide Attempts Among Adults in the United States. JAMA Psychiatry. 2017;10032(11):1095-1103. doi:10.1001/jamapsychiatry.2017.25825. Ikeda R, Hedegaard H, Bossarte R, et al. Improving national data systems for surveillance of suicide-related events. Am J Prev Med. 2014;47(3 SUPPL. 2):S122-S129. doi:10.1016/j.amepre.2014.05.0266. National Cancer Institute. Joinpoint Regression Software. https://surveillance.cancer.gov/joinpoint/. Published 2018. Accessed September 1, 2018.7. Centers for Disease Control and Prevention. Preventing Suicide: A Technical Package of Policy, Programs, and Practices. 


2017 ◽  
Vol 132 (1_suppl) ◽  
pp. 73S-79S ◽  
Author(s):  
Elizabeth R. Daly ◽  
Kenneth Dufault ◽  
David J. Swenson ◽  
Paul Lakevicius ◽  
Erin Metcalf ◽  
...  

Objectives: Opioid-related overdoses and deaths in New Hampshire have increased substantially in recent years, similar to increases observed across the United States. We queried emergency department (ED) data in New Hampshire to monitor opioid-related ED encounters as part of the public health response to this health problem. Methods: We obtained data on opioid-related ED encounters for the period January 1, 2011, through December 31, 2015, from New Hampshire’s syndromic surveillance ED data system by querying for (1) chief complaint text related to the words “fentanyl,” “heroin,” “opiate,” and “opioid” and (2) opioid-related International Classification of Diseases ( ICD) codes. We then analyzed the data to calculate frequencies of opioid-related ED encounters by age, sex, residence, chief complaint text values, and ICD codes. Results: Opioid-related ED encounters increased by 70% during the study period, from 3300 in 2011 to 5603 in 2015; the largest increases occurred in adults aged 18-29 and in males. Of 20 994 total opioid-related ED visits, we identified 18 554 (88%) using ICD code alone, 690 (3%) using chief complaint text alone, and 1750 (8%) using both chief complaint text and ICD code. For those encounters identified by ICD code only, the corresponding chief complaint text included varied and nonspecific words, with the most common being “pain” (n = 3335, 18%), “overdose” (n = 1555, 8%), “suicidal” (n = 816, 4%), “drug” (n = 803, 4%), and “detox” (n = 750, 4%). Heroin-specific encounters increased by 827%, from 4% of opioid-related encounters in 2011 to 24% of encounters in 2015. Conclusions: Opioid-related ED encounters in New Hampshire increased substantially from 2011 to 2015. Data from New Hampshire’s ED syndromic surveillance system provided timely situational awareness to public health partners to support the overall response to the opioid epidemic.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Pascal Vilain ◽  
Salamta Bah-Assoumani ◽  
Ali-Mohamed Youssouf ◽  
Laurent Filleul

ObjectiveTo confirm and to characterize the increase in emergency department (ED) visits related to the use of synthetic cannabinoids (SC)IntroductionOn October 2016, the Indian Ocean Regional Health Agency was alerted about an increase in ED visits related to adverse reactions associated with use of SC on Mayotte Island. In this context, an investigation based on a syndromic surveillance system was implemented by the regional unit of the French national public health agency.MethodsAn extraction of anonymized records routinely collected by the syndromic surveillance system (1) was carried out from January 1st, 2012 to October 30, 2016. ED visits related to the consumption of SC were identified from ICD-10 codes of the principal diagnostic according to two levels of confidence:- a probable case was defined as ED visit coded X69 (Intentional self-poisoning by and exposure to other and unspecified chemicals and noxious substances). This code has been implemented specifically by ED physicians since august 2015;- a suspect case was defined as ED visit coded: F11 (Mental and behavioral disorders due to use of opioids), F12 (Mental and behavioral disorders due to use of cannabinoids), F16 (Mental and behavioral disorders due to use of hallucinogens), F18 (Mental and behavioral disorders due to use of volatile solvents), F19 (Mental and behavioral disorders due to multiple drug use and use of other psychoactive substances).Based on these data, an epidemic curve and a descriptive analysis of ED visits were carried out.ResultsIn total, 146 ED visits related to adverse events associated with use of SC were registered from January 1st, 2012 to October 30, 2016. The epidemic curve shows two waves between 2015 and 2016 with a particularly high peak in August 2015 (Figure 1). In total, 49% (n=72/146) of these ED visits were probably related to adverse reactions associated to use SC and 51% (n=74/146) meet to the suspect case definition. On the surveillance period, men represented 84% of the patients (n=122) and median age (min – max) was 23 (8-62) years old. When the severity score variable was filled (n = 138), a vital emergency was reported for 4% (n = 5) of patients and 19% of patients were hospitalized.ConclusionsData from syndromic surveillance system allowed to confirm an increase in ED visits related to adverse reactions associated with use of SC in Mayotte Island. To our knowledge, it’s the first time that an outbreak related to use SC is described in the Ocean Indian areaThis phenomenon was particularly marked in 2015 with a peak of ED visits on August 2016.After this outbreak, the regional unit of the French national public health agency recommended the pursuit of the coding X69 in principal diagnosis with the following case definition: any patient with an adverse reaction attributed to synthetic cannabinoid use whether suspected by the medical team or declared by the patient himself or if the patient is in possession of the substance; and to raise awareness ED physicians to the notification of these poisonings to the Regional Addictive Surveillance Center.In conclusion, the young population, weakened by a precarious socio-economic situation, is a target for new synthetic drugs and a threat to public health. This emerging risk in Mayotte must be taken into account and must be actively monitored. In this context, collaborative work with the emergency services must continue in parallel with targeted prevention measures.References1. Vilain P, Maillard O, Raslan-Loubatie J, Abdou MA, Lernout T, Filleul L. Usefulness of Syndromic Surveillance for Early Outbreak Detection in Small Islands: The Case of Mayotte. Online Journal of Public Health Informatics. 2013;5(1):e149.


2021 ◽  
Vol 111 (3) ◽  
pp. 485-493
Author(s):  
Ashley Schappell D'Inverno ◽  
Nimi Idaikkadar ◽  
Debra Houry

Objectives. To report trends in sexual violence (SV) emergency department (ED) visits in the United States. Methods. We analyzed monthly changes in SV rates (per 100 000 ED visits) from January 2017 to December 2019 using Centers for Disease Control and Prevention’s National Syndromic Surveillance Program data. We stratified the data by sex and age groups. Results. There were 196 948 SV-related ED visits from January 2017 to December 2019. Females had higher rates of SV-related ED visits than males. Across the entire time period, females aged 50 to 59 years showed the highest increase (57.33%) in SV-related ED visits, when stratified by sex and age group. In all strata examined, SV-related ED visits displayed positive trends from January 2017 to December 2019; 10 out of the 24 observed positive trends were statistically significant increases. We also observed seasonal trends with spikes in SV-related ED visits during warmer months and declines during colder months, particularly in ages 0 to 9 years and 10 to 19 years. Conclusions. We identified several significant increases in SV-related ED visits from January 2017 to December 2019. Syndromic surveillance offers near-real-time surveillance of ED visits and can aid in the prevention of SV.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Kristin Arkin

ObjectiveIn August 2017, a large influx of visitors was expected to view the total solar eclipse in Idaho. The Idaho Syndromic Surveillance program planned to enhance situation awareness during the event. In preparation, we sought to examine syndrome performance of several newly developed chief complaint and combination chief complaint and diagnosis code syndrome definitions to aid in interpretation of syndromic surveillance data during the event.IntroductionThe August 21, 2017 total solar eclipse in Idaho was anticipated to lead to a large influx of visitors in many communities, prompting a widespread effort to assure Idaho was prepared. To support these efforts, the Idaho Syndromic Surveillance program (ISSp) developed a plan to enhance situation awareness during the event by conducting syndromic surveillance using emergency department (ED) visit data contributed to the National Syndromic Surveillance Program’s BioSense platform by Idaho hospitals. ISSp sought input on anticipated threats from state and local emergency management and public health partners, and selected 8 syndromes for surveillance.Ideally, the first electronic message containing information on an emergency department visit is sent to ISSp within 24 hours of the visit and includes the chief complaint for the visit. Data on other variables, such as diagnosis codes, are updated by subsequent messages for several days after the visit. Chief complaint (CC) text and discharge diagnosis (DD) codes are the primary variables used for syndrome match; delay in reporting these variables adversely affects timely syndrome match of visits. Because our plan included development of new syndrome definitions and querying data within 24 hours of visits, earlier than ISSp had done previously for trend analysis, we sought to better understand syndrome performance.MethodsWe defined messages with completed CC and DD as the last message regarding a visit where term count increased from previous messages regarding that visit, indicating new information was added to the field. We retrospectively assessed the total number of ED visits and calculated the daily frequency of completed CC and DD by days since visit date for visits during June 1–July 31, 2017. Additionally, we calculated facility mean word count in CC fields by averaging the word count of parsed, complete CC fields for visits occurring June 1–July 31, 2017 for each facility.During July 10–24, 2017, we calculated the daily frequency of visits occurring in the previous 90 days for total ED visits and syndrome-matched visits for 8 selected syndromes (heat-related illness; cold exposure; influenza-like-illness; nausea, vomiting, and diarrhea; animal/bug bites and stings; drowning/submersion; alcohol/drug intoxication; and medication replacement). Syndrome-matched visits were defined as visits with CC or DD that match the syndrome definition. We calculated the percent of syndrome-matched visits by syndromes defined with CC or CC and DD combined (CCDD) over time. Syndromes with fewer than 5 matched visits were excluded from analysis.ResultsComplete CCs were received for 99.1% of visits and complete DDs were received for 89.8% of visits. Complete CCs were submitted for 58.2% of visits within 1 day of the visit, 88.9% of visits within 3 days, and 98.9% of visits within 7 days. In contrast, complete DDs were submitted for 24.3% of visits within 1 day, 38.7% of visits within 3 days, and 53.7% of visits within 7 days (Table 1).During the observation period, data submission from facilities representing approximately 33% of visits was interrupted for 5 (36%) of 14 days. Heat-related illness, cold exposure, and drowning/submersion, were excluded from syndrome-match analysis. During the 9 days of uninterrupted data submission, 100% syndrome-matched visits for syndromes defined by CC alone and 69.1% syndrome-matched visits for syndromes defined by CCDD were identified within 6–7 days of initial visit. Facilities with interrupted data submission contributed 75% of CC syndrome-matched visits and 33% of CCDD syndrome-matched visits. The facility mean word count in CC fields from these facilities was >15 compared with 2–4 from other facilities.ConclusionsExamination of syndrome performance prior to a known event quantitated differences in timeliness of CC and DD completeness and syndrome match. CCs and DDs in visit messages were not complete within 24 hours of initial visit. CC completion was nearly 34 percentage points greater than DD completeness 1 day after initial visit and did not converge until ≥15 days after initial visit. Higher percentages of syndrome match within 6–7 days of initial visit were seen by CC alone than CCDD defined syndromes. Facilities using longer CCs contributed disproportionately to syndrome matching using CC, but not CCDD syndrome definitions. Syndromic surveillance system characteristics, including timeliness of CCs and DDs, length of CCs, and characteristics of facilities from which data transmission is interrupted should be considered when building syndrome definitions that will be used for surveillance within 7 days of emergency department visits and when interpreting syndromic surveillance findings.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Peter J Rock ◽  
M D Singleton

Objective: The aim of this project was to assess the face validity of surveillance case definitions for heroin overdose in emergency medical services (EMS) and emergency department syndromic surveillance (SyS) data systems by comparing case counts to those found in a statewide emergency department (ED) hospital administrative billing data system.Introduction: In 2016, the Centers for Disease Control and Prevention funded 12 states, under the Enhanced State Opioid Overdose Surveillance (ESOOS) program, to utilize state Emergency Medical Services (EMS) and emergency department syndromic surveillance (SyS) data systems to increase timeliness of state data on drug overdose events. An important component of the ESOOS program is the development and validation of case definitions for drug overdoses for EMS and ED SyS data systems with a focus on small area anomaly detection. In fiscal year one of the grant Kentucky collaborated with CDC to develop case definitions for heroin and opioid overdoses for both SyS and EMS data. These drug overdose case definitions are compared between these two rapid surveillance systems, and further compared to emergency department (ED) hospital administrative claims billing data, to assess their face validity.Methods: The most recent available data were pulled from multiple hospitals in a large healthcare system serving an urban region of Kentucky. Definitions for acute heroin overdose were applied to all three sources. For SyS and ED data, definitions were queried against the same hospitals within this geographic region and aggregated to week-level totals. SyS and ED data are similar with the exception of additional textual information available in SyS (such as chief complaint). Our EMS definition of heroin overdose was loosely based on a draft definition that was produced by the Massachusetts Department of Public Health, and relies more on textual analysis versus ICD10 codes used in SyS and ED data systems. While SyS and ED used the same hospitals as the frame of selection, EMS used incidents that occurred in the approximate catchment area served by those hospitals. Weekly totals from all three data sources were plotted in R studio with LOESS-smoothed trend lines. Unsmoothed times series plots also demonstrate highly correlated trends, but the smoothed trend lines are less cluttered and easier to interpret.Results: Visual interpretation of the LOESS-smoothed trend lines shows very similar trajectories among all three sources [Fig 1]. The resultant graph demonstrates that individually, the time courses described by SyS and EMS data track closely with the one observed in ED data. The absolute counts between the three sources showed some differences, as expected. The EMS system captures a slightly different cohort that may include people that do not go to the ED (observation patients, refused transport, etc.) and SyS/ED have slightly different definitions (as ED does not include a free-text chief complaint. These types of limitations are better explored through data linkage that may or may not include medical record review to establish ground truth.Conclusions: Public health surveillance of drug overdoses has traditionally relied on ED billing data. In most states, however, there is a lag of at least several months before this data becomes available for analysis. In some jurisdictions the delay may be considerably longer. Rapid surveillance data sources may allow for more timely identification of changes in overdose patterns at the local level. In addition, SyS/EMS can be used together to confirm that a spike seen in one rapid system is confirmed within the other, with relative ease.Though the comparison is a rather simple or crude visual analysis of three data systems at a common geographic level, there is still appears to be a common pattern among the three systems. While this does not carry the validity of cross-data matched analysis, it does provide some of the utility of looking at these system collective without match; and therefore may be of use to surveillance users that may be limited by de-identified data.


2017 ◽  
Vol 132 (4) ◽  
pp. 471-479 ◽  
Author(s):  
Kathryn DeYoung ◽  
Yushiuan Chen ◽  
Robert Beum ◽  
Michele Askenazi ◽  
Cali Zimmerman ◽  
...  

Objectives: Reliable methods are needed to monitor the public health impact of changing laws and perceptions about marijuana. Structured and free-text emergency department (ED) visit data offer an opportunity to monitor the impact of these changes in near-real time. Our objectives were to (1) generate and validate a syndromic case definition for ED visits potentially related to marijuana and (2) describe a method for doing so that was less resource intensive than traditional methods. Methods: We developed a syndromic case definition for ED visits potentially related to marijuana, applied it to BioSense 2.0 data from 15 hospitals in the Denver, Colorado, metropolitan area for the period September through October 2015, and manually reviewed each case to determine true positives and false positives. We used the number of visits identified by and the positive predictive value (PPV) for each search term and field to refine the definition for the second round of validation on data from February through March 2016. Results: Of 126 646 ED visits during the first period, terms in 524 ED visit records matched ≥1 search term in the initial case definition (PPV, 92.7%). Of 140 932 ED visits during the second period, terms in 698 ED visit records matched ≥1 search term in the revised case definition (PPV, 95.7%). After another revision, the final case definition contained 6 keywords for marijuana or derivatives and 5 diagnosis codes for cannabis use, abuse, dependence, poisoning, and lung disease. Conclusions: Our syndromic case definition and validation method for ED visits potentially related to marijuana could be used by other public health jurisdictions to monitor local trends and for other emerging concerns.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Rene Borroto ◽  
Bill Williamson ◽  
Patrick Pitcher ◽  
Lance Ballester ◽  
Wendy Smith ◽  
...  

ObjectiveDescribe how the Georgia Department of Public Health (DPH) usessyndromic surveillance to initiate review by District Epidemiologists(DEs) to events that may warrant a public health response (1).IntroductionDPH uses its State Electronic Notifiable Disease SurveillanceSystem (SendSS) Syndromic Surveillance (SS) Module to collect,analyze and display results of emergency department patient chiefcomplaint data from hospitals throughout Georgia.MethodsDPH prepares a daily SS report, based upon the analysis ofdaily visits to 112 Emergency Department (EDs). The visits areclassified in 33 syndromes. Queries of chief complaint and dischargediagnosis are done using the internal query capability of SendSS-SSand programming in SAS/BASE. Charting of the absolute countsor percentage of ED visits by syndromes is done using the internalcharting capability of SendSS-SS. A daily SS report includes thefollowing sections:Statewide Emergency Department Visitsby Priority Syndromes(Bioterrorism, BloodyRespiratory,FeverRespiratory, FeverChest, FeverFluAdmit, FeverFluDeaths,VeryIll, andPoxRashFever, Botulism, Poison, BloodyDiarrhea,BloodyVomit, FeverGI, ILI, FeverFlu, RashFever, Diarrhea,Vomit).Statewide Flag Analysis: Is intended to detect statewideflags, by using theChartscapability in SendSS SS.Possible caseswith presumptive diagnosis of potentially notifiable diseases: Isintended to provide early-warning to the DEs of possible cases thatare reportable to public health immediately or within 7 days usingqueries in the Chief Complaint and Preliminary Diagnosis fields ofSendSS-SS.Possible clusters of illness: Since any cluster of illnessmust be reported immediately to DPH, this analysis is aimed atquerying and identifying possible clusters of patients with similarsymptoms (2).Possible travel-related illness: Is intended to identifypatients with symptoms and recent travel history.Other events ofinterest: Exposures to ill patients in institutional settings (e.g. chiefcomplaint indicates that other children in the daycare have similarsymptoms).Trend Analysis: Weekly analysis of seasonality andtrends of 14 syndromes. Finally, specific events are notified to andreviewed by the 18 DEs, who follow up by contacting the InfectionPreventionists of the hospitals to identify the patients using medicalrecords or other hospital-specific identification numbers and followup on the laboratory test results.ResultsSince 05/15/2016, 12 travel-related illnesses, 29 vaccine-preventable diseases, 14 clusters, and 3 chemical exposures havebeen notified to DEs. For instance, a cluster of chickenpox in childrenwas identified after the DE contacted the Infection Preventionist ofa hospital, who provided the DE with the laboratory results and thephysician notes about the symptoms of the patients. These actionshave resulted in earlier awareness of single cases or cluster of illness,prompt reporting of notifiable diseases, and successful interactionbetween DEs and health care providers. In addition, SS continues totrack the onset, peak, and decline of seasonal illnesses.ConclusionsThe implementation of SS in the State of Georgia is helping withthe timely detection and early responses to disease events and couldprove useful in reducing the disease burden caused by a bioterroristattack.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Em Stephens

ObjectiveTo develop and evaluate syndrome definitions for the identificationof acute unintentional drug overdose events including opioid, heroin,and unspecified substances among emergency department (ED) visitsin Virginia.IntroductionNationally, deaths due to opioid overdose have continuallyincreased for the past 15 years1. Deaths specifically related to heroinincreased more than four-fold between 2002 and 20142. Hospitalinpatient discharge data provide information on non-fatal overdoses,but include a significant lag in reporting time3. Syndromic ED visitdata provide near real-time identification of public health issues andcan be leveraged to inform public health actions on the emergingthreat of drug overdose.MethodsVirginia Department of Health (VDH) developed two syndromedefinitions in 2014 to capture acute unintentional drug overdoseevents among syndromic ED visit data. Syndrome 1 captured visitsfor overdose, whether or not a specific substance was mentioned.Syndrome 2 captured only visits for heroin overdose. Definitionswere based on free-text terms found within the chief complaintand standardized text or International Classification of Diseases(ICD) codes within the diagnosis field. In 2016, both definitionswere revised to identify additional inclusion and exclusion criteriaaccording to CDC guidance documentation and syndrome definitionsused by other state jurisdictions.Microsoft SQL was used to modify both definitions based on thenewly identified chief complaint and diagnosis criteria. Record leveldata were analyzed for their adherence to established criteria using aniterative evaluation process.The scope of Syndrome 1 (2016) was narrowed from the 2014version by excluding visits for non-opioid substances, heroin, andnon-acute indicators. It included chief complaint and diagnosisterms related to opioids, unspecified substance overdose, narcotics,and Narcan or naloxone, and excluded terms related to suicide,alcohol overdose alone, withdrawal, detoxification, rehab, addiction,constipation, chronic pain, and any specified non-opioid drug ormedication. Syndrome 2 (2016) included chief complaint or diagnosisterms mentioning heroin overdose and excluded suicide, withdrawal,detoxification, rehab, and addiction. Visits with mention of suicide,rehab, or addiction were identified during the evaluation process,resulting in the exclusion of these terms in the revised query.From January 1, 2015 to July 31, 2016, the number of visitscaptured by the revised syndrome definitions was compared to thenumber captured by the 2014 definitions. Correlation coefficientswere calculated using SAS 9.3.ResultsThe revised Syndrome 1 found 4296 fewer ED visits(29% decrease) for acute unintentional drug overdose betweenJanuary 1, 2015 and July 31, 2016 compared to the 2014 definition.Despite the drop in volume, the monthly trends were similar forthe 2014 and 2016 definitions (correlation coefficient = 0.95,p < 0.001). For the same time period, the revised Syndrome 2 definitionreturned 108 fewer visits (6% decrease) for acute unintentional heroinoverdose. The monthly trends were also similar for the 2014 and 2016definitions (correlation coefficient = 0.98, p < 0.001).ConclusionsBoth revised syndrome definitions improved specificity incapturing overdose visits as Syndrome 1 (2016) identified 29% fewervisits and Syndrome 2 (2016) identified 6% fewer visits found to beunrelated to the desired overdose criteria.When developing the revised syndrome definitions, VDH decidedto exclude non-acute drug-related visits. Terms such as addiction,detoxification, rehab, withdrawal, chronic pain, and constipation wereindicative of habitual drug use or abuse instead of acute overdose andwere thus excluded. In narrowing the scope of Syndrome 1, VDHalso identified and excluded visits for specified drug and medicationoverdose. Together, these expanded exclusion criteria resulted ingreater specificity with both updated syndromes.These revised syndrome definitions enable VDH to better trackopioid and heroin overdose trends in near real-time and overextended time periods which can be used to inform public healthactions. Limitations include the inconsistency of diagnosis codingamong syndromic data submitters, which may lead to geographicunderrepresentation of unintentional drug overdose visits based onthe location of health care systems. VDH will continue to evaluate andrefine these overdose syndrome definitions as this emerging healthissue evolves.


Sign in / Sign up

Export Citation Format

Share Document