scholarly journals Assessing Definitions of Heroin Overdose in ED & EMS Data Using Hospital Billing Data

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Peter J Rock ◽  
M D Singleton

Objective: The aim of this project was to assess the face validity of surveillance case definitions for heroin overdose in emergency medical services (EMS) and emergency department syndromic surveillance (SyS) data systems by comparing case counts to those found in a statewide emergency department (ED) hospital administrative billing data system.Introduction: In 2016, the Centers for Disease Control and Prevention funded 12 states, under the Enhanced State Opioid Overdose Surveillance (ESOOS) program, to utilize state Emergency Medical Services (EMS) and emergency department syndromic surveillance (SyS) data systems to increase timeliness of state data on drug overdose events. An important component of the ESOOS program is the development and validation of case definitions for drug overdoses for EMS and ED SyS data systems with a focus on small area anomaly detection. In fiscal year one of the grant Kentucky collaborated with CDC to develop case definitions for heroin and opioid overdoses for both SyS and EMS data. These drug overdose case definitions are compared between these two rapid surveillance systems, and further compared to emergency department (ED) hospital administrative claims billing data, to assess their face validity.Methods: The most recent available data were pulled from multiple hospitals in a large healthcare system serving an urban region of Kentucky. Definitions for acute heroin overdose were applied to all three sources. For SyS and ED data, definitions were queried against the same hospitals within this geographic region and aggregated to week-level totals. SyS and ED data are similar with the exception of additional textual information available in SyS (such as chief complaint). Our EMS definition of heroin overdose was loosely based on a draft definition that was produced by the Massachusetts Department of Public Health, and relies more on textual analysis versus ICD10 codes used in SyS and ED data systems. While SyS and ED used the same hospitals as the frame of selection, EMS used incidents that occurred in the approximate catchment area served by those hospitals. Weekly totals from all three data sources were plotted in R studio with LOESS-smoothed trend lines. Unsmoothed times series plots also demonstrate highly correlated trends, but the smoothed trend lines are less cluttered and easier to interpret.Results: Visual interpretation of the LOESS-smoothed trend lines shows very similar trajectories among all three sources [Fig 1]. The resultant graph demonstrates that individually, the time courses described by SyS and EMS data track closely with the one observed in ED data. The absolute counts between the three sources showed some differences, as expected. The EMS system captures a slightly different cohort that may include people that do not go to the ED (observation patients, refused transport, etc.) and SyS/ED have slightly different definitions (as ED does not include a free-text chief complaint. These types of limitations are better explored through data linkage that may or may not include medical record review to establish ground truth.Conclusions: Public health surveillance of drug overdoses has traditionally relied on ED billing data. In most states, however, there is a lag of at least several months before this data becomes available for analysis. In some jurisdictions the delay may be considerably longer. Rapid surveillance data sources may allow for more timely identification of changes in overdose patterns at the local level. In addition, SyS/EMS can be used together to confirm that a spike seen in one rapid system is confirmed within the other, with relative ease.Though the comparison is a rather simple or crude visual analysis of three data systems at a common geographic level, there is still appears to be a common pattern among the three systems. While this does not carry the validity of cross-data matched analysis, it does provide some of the utility of looking at these system collective without match; and therefore may be of use to surveillance users that may be limited by de-identified data.

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Emery Shekiro ◽  
Lily Sussman ◽  
Talia Brown

Objective: In order to better describe local drug-related overdoses, we developed a novel syndromic case definition using discharge diagnosis codes from emergency department data in the Colorado North Central Region (CO-NCR). Secondarily, we used free text fields to understand the use of unspecified diagnosis fields.Introduction: The United States is in the midst of a drug crisis; drug-related overdoses are the leading cause of unintentional death in the country. In Colorado the rate of fatal drug overdose increased 68% from 2002-2014 (9.7 deaths per 100,000 to 16.3 per 100,000, respectively)1, and non-fatal overdose also increased during this time period (23% increase in emergency department visits since 2011)2. The CDC’s National Syndromic Surveillance Program (NSSP) provides near-real time monitoring of emergency department (ED) events across the country, with information uploaded daily on patient demographics, chief complaint for visit, diagnosis codes, triage notes, and more. Colorado North Central Region (CO-NCR) receives data for 4 local public health agencies from 25 hospitals across Adams, Arapahoe, Boulder, Denver, Douglas, and Jefferson Counties.Access to local syndromic data in near-real time provides valuable information for local public health program planning, policy, and evaluation efforts. However, use of these data also comes with many challenges. For example, we learned from key informant interviews with ED staff in Boulder and Denver counties, about concern with the accuracy and specificity of drug-related diagnosis codes, specifically for opioid-related overdoses.Methods: Boulder County Public Health (BCPH) and Denver Public Health (DPH) developed a query in Early Notification of Community Based Epidemics (ESSENCE) using ICD-10-CM codes to identify cases of drug-related overdose [T36-T51] from October 2016 to September 2017. The Case definition included unintentional, self-harm, assault and undetermined poisonings, but did not include cases coded as adverse effects or underdosing of medication. Cases identified in the query were stratified by demographic factors (i.e., gender and age) and substance used in poisoning. The first diagnosis code in the file was considered the primary diagnosis. Chief complaint and triage note fields were examined to further describe unspecified cases and to describe how patients present to emergency departments in the CO-NCR. We also explored whether detection of drug overdose visits captured by discharge diagnosis data varied by patient sex, age, or county.Results: The query identified 2,366 drug-related overdoses in the CO-NCR. The prevalence of drug overdoses differed across age groups. The detection of drug overdoses was highest among our youth and young adult populations; 16 to 20 year olds (16.0%), 21-25 year olds (11.4%), 26-30 year olds (11.4%). Females comprised 56.1% of probable general drug overdoses. The majority of primary diagnoses (31.0%) included poisonings related to diuretics and other unspecified drugs (T50), narcotics (T40) (12.6%), or non-opioid analgesics (T39) (7.8%). For some cases with unspecified drug overdose codes there was additional information about drugs used and narcan administration found in the triage notes and chief complaint fields.Conclusions: Syndromic surveillance offers the opportunity to capture drug-related overdose data in near-real time. We found variation in drug-related overdose by demographic groups. Unspecified drug overdose codes are extremely common, which likely negatively impacts the quality of drug-specific surveillance. Leveraging chief complaint and triage notes could improve our understanding of factors involved in drug-related overdose with limitations in discharge diagnosis. Chart reviews and access to more fields from the ED electronic health record could improve local drug surveillance.


Author(s):  
Peter Rock ◽  
Michael Singleton

ObjectiveThe aim of this project was to explore changing patterns in patient refusal to transport by emergency medical services for classified heroin overdoses and possible implications on heroin overdose surveillance in Kentucky.IntroductionAs a Centers for Disease Control and Prevention Enhanced State Opioid Overdose Surveillance (ESOOS) funded state, Kentucky started utilizing Emergency Medical Services (EMS) data to increase timeliness of state data on drug overdose events in late 2016. Using developed definitions of heroin overdose for EMS emergency runs, Kentucky analyzed the patterns of refused/transported EMS runs for both statewide and local jurisdictions. Changes in EMS transportation patterns of heroin overdoses can have a dramatic impact on other surveillance systems, such as emergency department (ED) claims data or syndromic surveillance (SyS) data.MethodsAs part of the ESOOS grant, Kentucky receives all emergency-only EMS runs monthly from Kentucky Board for Emergency Medical Services, Kentucky State Ambulance Reporting System data. Heroin cases were classified based on text and medications (Narcan) administered, with comparisons to historic data discussed elsewhere (Rock & Singleton, 2018). Transportation classifications are based on EMS standard elements defining treatment with transportation vs refusal to transport to hospital and canceled runs were excluded. Initial analysis included trend analysis at state and local levels, as well as demographic comparisons of refusal vs transported heroin overdose encounters.ResultsStatewide trends in EMS heroin overdoses with refusal transport significantly increased from 5% (n=42) in 2016 quarter three to 22% (n=290) in 2018 quarter two (Fig 1). Initial demographic analysis does not show any significant difference between refusals/transported for age, gender, or race. However, there are significant differences among geographic regions in Kentucky with heroin encounter refusal proportion ranging from 3%-48% in 2018 quarter two. Specifically, one urban area (Fig 2) shows the change in proportion of refusal increasing from 15% (n=23) in 2016 quarter three to 47% (n=110) in 2018 quarter two. In this geographic area, combined refused/transported EMS heroin overdoses compared to traditional ED data demonstrates opposing heroin overdose patterns for the same local with EMS showing and increasing trend overtime and ED showing a decreasing trend (Fig 3).ConclusionsTraditional public health surveillance for heroin overdose has historically relied on ED billing data, though agencies are starting to use syndromic surveillance, too (Vivolo-Kantor et al., 2016). These systems share similar underlying ED data, albeit with different components, quality, and limitations. However, in terms of the overdose epidemic, both are limited to only heroin overdoses that result in ED hospital encounters. The recent drastic increase in refused transport can have significant impacts on heroin surveillance. Jurisdictions relying on SyS or ED data for monitoring overdose patterns and/or evaluating interventions may be significantly underestimating acute overdose occurrence in the population. This analysis highlights the importance of this preclinical data source in surveillance of the heroin epidemic.ReferencesRock, P. J., & Singleton, M. D. (2018). Assessing Definitions of Heroin Overdose in ED & EMS Data Using Hospital Billing Data, 10(1), 2579.Vivolo-Kantor, A. M., Seth, P., Gladden, ; R Matthew, Mattson, C. L., Baldwin, G. T., Kite-Powell, A., & Coletta, M. A. (2016). Morbidity and Mortality Weekly Report Vital Signs: Trends in Emergency Department Visits for Suspected Opioid Overdoses — United States, 67(9), 279–285. Retrieved from https://www.cdc.gov/mmwr/volumes/67/wr/pdfs/mm6709e1-H.pdf


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Alana M. Vivolo-Kantor ◽  
R. Matthew Gladden ◽  
Aaron Kite-Powell ◽  
Michael Coletta ◽  
Grant Baldwin

ObjectiveThis paper analyzes emergency department syndromic data in the Centers for Disease Control and Prevention’s (CDC) National Syndromic Surveillance Program’s (NSSP) BioSense Platform to understand trends in suspected heroin overdose.IntroductionOverdose deaths involving opioids (i.e., opioid pain relievers and illicit opioids such as heroin) accounted for at least 63% (N = 33,091) of overdose deaths in 2015. Overdose deaths related to illicit opioids, heroin and illicitly-manufactured fentanyl, have rapidly increased since 2010. For instance, heroin overdose deaths quadrupled from 3,036 in 2010 to 12,989 in 2015. Unfortunately, timely response to emerging trends is inhibited by time lags for national data on both overdose mortality via vital statistics (8-12 months) and morbidity via hospital discharge data (over 2 years). Emergency department (ED) syndromic data can be leveraged to respond more quickly to emerging drug overdose trends as well as identify drug overdose outbreaks. CDC’s NSSP BioSense Platform collects near real-time ED data on approximately two-thirds of ED visits in the US. NSSP’s data analysis and visualization tool, Electronic Surveillance System for the Notification of Community-based Epidemics (ESSENCE), allows for tailored syndrome queries and can monitor ED visits related to heroin overdose at the local, state, regional, and national levels quicker than hospital discharge data.MethodsWe analyzed ED syndromic data using ESSENCE to detect monthly and annual trends in suspected unintentional or undetermined heroin overdose by sex and region for those 11 years and older. An ED visit was categorized as a suspected heroin overdose if it met several criteria, including heroin overdose ICD-9-CM and ICD-10-CM codes (i.e., 965.01 and E850.0; T40.1X1A, T40.1X4A) and chief complaint text associated with a heroin overdose (e.g., “heroin overdose”). Using computer code developed specifically for ESSENCE based on our case definition, we queried data from 9 of the 10 HHS regions from July 2016-July 2017. One region was excluded due to large changes in data submitted during the time period. We conducted trend analyses using the proportion of suspected heroin overdoses by total ED visits for a given month with all sexes and regions combined and then stratified by sex and region. To determine significant linear changes in monthly and annual trends, we used the National Cancer Institute’s Joinpoint Regression Program.ResultsFrom July 2016-July 2017, over 72 million total ED visits were captured from all sites and jurisdictions submitting data to NSSP. After applying our case definition to these records, 53,786 visits were from a suspected heroin overdose, which accounted for approximately 7.5 heroin overdose visits per 10,000 total ED visits during that timeframe. The rate of suspected heroin overdose visits to total ED visits was highest in June 2017 (8.7 per 10,000) and lowest in August 2016 (6.6 per 10,000 visits). Males accounted for a larger rates of visits over all months (range = 10.7 to 14.2 per 10,000 visits) than females (range = 3.8 to 4.7 per 10,000 visits). Overall, compared to July 2016, suspected heroin overdose ED visits from July 2017 were significantly higher for all sexes and US regions combined (β = .010, p = .036). Significant increases were also demonstrated over time for males (β = .009, p = .044) and the Northeast (β = .012, p = .025). No other significant increases or decreases were detected by demographics or on a monthly basis.ConclusionsEmergency department visits related to heroin overdose increased significantly from July 2016 to July 2017, with significant increases in the Northeast and among males. Urgent public health action is needed reduce heroin overdoses including increasing the availability of naloxone (an antidote for opioid overdose), linking people at high risk for heroin overdose to medication-assisted treatment, and reducing misuse of opioids by implementing safer opioid prescribing practices. Despite these findings, there are several limitations of these data: not all states sharing data have full participation thus limiting the representativeness of the data; not all ED visits are shared with NSSP; and our case definition may under-identify (e.g., visits missing discharge diagnosis codes and lacking specificity in chief complaint text) or over-identify (e.g., reliance on hospital staff impression and not drug test results) heroin overdose visits. Nonetheless, ED syndromic surveillance data can provide timely insight into emerging regional and national heroin overdose trends.ReferencesWarner M, Chen LH, Makuc DM, Anderson RN, Minino AM. Drug poisoning deaths in the United States, 1980-2008. NCHS Data Brief 2011(81):1-8.Rudd RA, Seth P, David F, Scholl L. Increases in Drug and Opioid-Involved Overdose Deaths - United States, 2010-2015. MMWR Morb Mortal Wkly Rep 2016;65(5051):1445-1452.Spencer MRA, F. Timeliness of Death Certificate Data for Mortality Surveillance and Provisional Estimates. National Center for Health Statistics 2017.Richards CL, Iademarco MF, Atkinson D, Pinner RW, Yoon P, Mac Kenzie WR, et al. Advances in Public Health Surveillance and Information Dissemination at the Centers for Disease Control and Prevention. Public Health Rep 2017;132(4):403-410.


2017 ◽  
Vol 132 (1_suppl) ◽  
pp. 73S-79S ◽  
Author(s):  
Elizabeth R. Daly ◽  
Kenneth Dufault ◽  
David J. Swenson ◽  
Paul Lakevicius ◽  
Erin Metcalf ◽  
...  

Objectives: Opioid-related overdoses and deaths in New Hampshire have increased substantially in recent years, similar to increases observed across the United States. We queried emergency department (ED) data in New Hampshire to monitor opioid-related ED encounters as part of the public health response to this health problem. Methods: We obtained data on opioid-related ED encounters for the period January 1, 2011, through December 31, 2015, from New Hampshire’s syndromic surveillance ED data system by querying for (1) chief complaint text related to the words “fentanyl,” “heroin,” “opiate,” and “opioid” and (2) opioid-related International Classification of Diseases ( ICD) codes. We then analyzed the data to calculate frequencies of opioid-related ED encounters by age, sex, residence, chief complaint text values, and ICD codes. Results: Opioid-related ED encounters increased by 70% during the study period, from 3300 in 2011 to 5603 in 2015; the largest increases occurred in adults aged 18-29 and in males. Of 20 994 total opioid-related ED visits, we identified 18 554 (88%) using ICD code alone, 690 (3%) using chief complaint text alone, and 1750 (8%) using both chief complaint text and ICD code. For those encounters identified by ICD code only, the corresponding chief complaint text included varied and nonspecific words, with the most common being “pain” (n = 3335, 18%), “overdose” (n = 1555, 8%), “suicidal” (n = 816, 4%), “drug” (n = 803, 4%), and “detox” (n = 750, 4%). Heroin-specific encounters increased by 827%, from 4% of opioid-related encounters in 2011 to 24% of encounters in 2015. Conclusions: Opioid-related ED encounters in New Hampshire increased substantially from 2011 to 2015. Data from New Hampshire’s ED syndromic surveillance system provided timely situational awareness to public health partners to support the overall response to the opioid epidemic.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Kristin Arkin

ObjectiveIn August 2017, a large influx of visitors was expected to view the total solar eclipse in Idaho. The Idaho Syndromic Surveillance program planned to enhance situation awareness during the event. In preparation, we sought to examine syndrome performance of several newly developed chief complaint and combination chief complaint and diagnosis code syndrome definitions to aid in interpretation of syndromic surveillance data during the event.IntroductionThe August 21, 2017 total solar eclipse in Idaho was anticipated to lead to a large influx of visitors in many communities, prompting a widespread effort to assure Idaho was prepared. To support these efforts, the Idaho Syndromic Surveillance program (ISSp) developed a plan to enhance situation awareness during the event by conducting syndromic surveillance using emergency department (ED) visit data contributed to the National Syndromic Surveillance Program’s BioSense platform by Idaho hospitals. ISSp sought input on anticipated threats from state and local emergency management and public health partners, and selected 8 syndromes for surveillance.Ideally, the first electronic message containing information on an emergency department visit is sent to ISSp within 24 hours of the visit and includes the chief complaint for the visit. Data on other variables, such as diagnosis codes, are updated by subsequent messages for several days after the visit. Chief complaint (CC) text and discharge diagnosis (DD) codes are the primary variables used for syndrome match; delay in reporting these variables adversely affects timely syndrome match of visits. Because our plan included development of new syndrome definitions and querying data within 24 hours of visits, earlier than ISSp had done previously for trend analysis, we sought to better understand syndrome performance.MethodsWe defined messages with completed CC and DD as the last message regarding a visit where term count increased from previous messages regarding that visit, indicating new information was added to the field. We retrospectively assessed the total number of ED visits and calculated the daily frequency of completed CC and DD by days since visit date for visits during June 1–July 31, 2017. Additionally, we calculated facility mean word count in CC fields by averaging the word count of parsed, complete CC fields for visits occurring June 1–July 31, 2017 for each facility.During July 10–24, 2017, we calculated the daily frequency of visits occurring in the previous 90 days for total ED visits and syndrome-matched visits for 8 selected syndromes (heat-related illness; cold exposure; influenza-like-illness; nausea, vomiting, and diarrhea; animal/bug bites and stings; drowning/submersion; alcohol/drug intoxication; and medication replacement). Syndrome-matched visits were defined as visits with CC or DD that match the syndrome definition. We calculated the percent of syndrome-matched visits by syndromes defined with CC or CC and DD combined (CCDD) over time. Syndromes with fewer than 5 matched visits were excluded from analysis.ResultsComplete CCs were received for 99.1% of visits and complete DDs were received for 89.8% of visits. Complete CCs were submitted for 58.2% of visits within 1 day of the visit, 88.9% of visits within 3 days, and 98.9% of visits within 7 days. In contrast, complete DDs were submitted for 24.3% of visits within 1 day, 38.7% of visits within 3 days, and 53.7% of visits within 7 days (Table 1).During the observation period, data submission from facilities representing approximately 33% of visits was interrupted for 5 (36%) of 14 days. Heat-related illness, cold exposure, and drowning/submersion, were excluded from syndrome-match analysis. During the 9 days of uninterrupted data submission, 100% syndrome-matched visits for syndromes defined by CC alone and 69.1% syndrome-matched visits for syndromes defined by CCDD were identified within 6–7 days of initial visit. Facilities with interrupted data submission contributed 75% of CC syndrome-matched visits and 33% of CCDD syndrome-matched visits. The facility mean word count in CC fields from these facilities was >15 compared with 2–4 from other facilities.ConclusionsExamination of syndrome performance prior to a known event quantitated differences in timeliness of CC and DD completeness and syndrome match. CCs and DDs in visit messages were not complete within 24 hours of initial visit. CC completion was nearly 34 percentage points greater than DD completeness 1 day after initial visit and did not converge until ≥15 days after initial visit. Higher percentages of syndrome match within 6–7 days of initial visit were seen by CC alone than CCDD defined syndromes. Facilities using longer CCs contributed disproportionately to syndrome matching using CC, but not CCDD syndrome definitions. Syndromic surveillance system characteristics, including timeliness of CCs and DDs, length of CCs, and characteristics of facilities from which data transmission is interrupted should be considered when building syndrome definitions that will be used for surveillance within 7 days of emergency department visits and when interpreting syndromic surveillance findings.


2004 ◽  
Vol 11 (12) ◽  
pp. 1262-1267 ◽  
Author(s):  
Aaron T. Fleischauer ◽  
Benjamin J. Silk ◽  
Mare Schumacher ◽  
Ken Komatsu ◽  
Sarah Santana ◽  
...  

2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Rene Borroto ◽  
Bill Williamson ◽  
Patrick Pitcher ◽  
Lance Ballester ◽  
Wendy Smith ◽  
...  

ObjectiveDescribe how the Georgia Department of Public Health (DPH) usessyndromic surveillance to initiate review by District Epidemiologists(DEs) to events that may warrant a public health response (1).IntroductionDPH uses its State Electronic Notifiable Disease SurveillanceSystem (SendSS) Syndromic Surveillance (SS) Module to collect,analyze and display results of emergency department patient chiefcomplaint data from hospitals throughout Georgia.MethodsDPH prepares a daily SS report, based upon the analysis ofdaily visits to 112 Emergency Department (EDs). The visits areclassified in 33 syndromes. Queries of chief complaint and dischargediagnosis are done using the internal query capability of SendSS-SSand programming in SAS/BASE. Charting of the absolute countsor percentage of ED visits by syndromes is done using the internalcharting capability of SendSS-SS. A daily SS report includes thefollowing sections:Statewide Emergency Department Visitsby Priority Syndromes(Bioterrorism, BloodyRespiratory,FeverRespiratory, FeverChest, FeverFluAdmit, FeverFluDeaths,VeryIll, andPoxRashFever, Botulism, Poison, BloodyDiarrhea,BloodyVomit, FeverGI, ILI, FeverFlu, RashFever, Diarrhea,Vomit).Statewide Flag Analysis: Is intended to detect statewideflags, by using theChartscapability in SendSS SS.Possible caseswith presumptive diagnosis of potentially notifiable diseases: Isintended to provide early-warning to the DEs of possible cases thatare reportable to public health immediately or within 7 days usingqueries in the Chief Complaint and Preliminary Diagnosis fields ofSendSS-SS.Possible clusters of illness: Since any cluster of illnessmust be reported immediately to DPH, this analysis is aimed atquerying and identifying possible clusters of patients with similarsymptoms (2).Possible travel-related illness: Is intended to identifypatients with symptoms and recent travel history.Other events ofinterest: Exposures to ill patients in institutional settings (e.g. chiefcomplaint indicates that other children in the daycare have similarsymptoms).Trend Analysis: Weekly analysis of seasonality andtrends of 14 syndromes. Finally, specific events are notified to andreviewed by the 18 DEs, who follow up by contacting the InfectionPreventionists of the hospitals to identify the patients using medicalrecords or other hospital-specific identification numbers and followup on the laboratory test results.ResultsSince 05/15/2016, 12 travel-related illnesses, 29 vaccine-preventable diseases, 14 clusters, and 3 chemical exposures havebeen notified to DEs. For instance, a cluster of chickenpox in childrenwas identified after the DE contacted the Infection Preventionist ofa hospital, who provided the DE with the laboratory results and thephysician notes about the symptoms of the patients. These actionshave resulted in earlier awareness of single cases or cluster of illness,prompt reporting of notifiable diseases, and successful interactionbetween DEs and health care providers. In addition, SS continues totrack the onset, peak, and decline of seasonal illnesses.ConclusionsThe implementation of SS in the State of Georgia is helping withthe timely detection and early responses to disease events and couldprove useful in reducing the disease burden caused by a bioterroristattack.


2021 ◽  
Author(s):  
T Sonia Boender ◽  
Wei Cai ◽  
Madlen Schranz ◽  
Theresa Kocher ◽  
Birte Wagner ◽  
...  

Introduction: To better assess the epidemiological situation of acute respiratory illness in Germany over time, we used emergency department data for syndromic surveillance before and during the COVID-19 pandemic. Methods: We included routine attendance data from emergency departments who continuously transferred data between week 10-2017 and 10-2021, with ICD-10 codes available for >75% of the attendances. Case definitions for acute respiratory illness (ARI), severe ARI (SARI), influenza-like illness (ILI), respiratory syncytial virus disease (RSV) and Coronavirus disease 2019 (COVID-19) were based on a combination of ICD-10 codes, and/or chief complaints, sometimes combined with information on hospitalisation and age. Results: We included 1,372,958 attendances from eight emergency departments. The number of attendances dropped in March 2020, increased during summer, and declined again during the resurge of COVID-19 cases in autumn and winter of 2020/2021. A pattern of seasonality of acute respiratory infections could be observed. By using different case definitions (i.e. for ARI, SARI, ILI, RSV) both the annual influenza seasons in the years 2017-2020 and the dynamics of the COVID-19 pandemic in 2020-2021 were apparent. The absence of a flu season during the fall and winter of 2020/2021 was visible, in parallel to the resurge of COVID-19 cases. The proportion of SARI among ARI cases peaked in April-May 2020 and November 2020-January 2021. Conclusion: Syndromic surveillance using routine emergency department data has the potential to monitor the trends, timing, duration, magnitude and severity of illness caused by respiratory viruses, including both influenza and SARS-CoV-2.


2004 ◽  
Vol 11 (12) ◽  
pp. 1262-1267 ◽  
Author(s):  
Aaron T. Fleischauer ◽  
Benjamin J. Silk ◽  
Mare Schumacher ◽  
Ken Komatsu ◽  
Sarah Santana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document