scholarly journals TRUST IN THE MUSIC? AUTOMATED MUSIC DISCOVERY, MUSIC RECOMMENDATION SYSTEMS & ALGORITHMIC CULTURE.

2019 ◽  
Vol 2019 ◽  
Author(s):  
Freeman Sophie Olivia

In this paper I argue that music recommendation algorithms are a complex element of contemporary digital culture. We trust music streaming and recommender systems like Spotify to ‘set the mood’ for us, to soundtrack our private lives and activities, to recommend & discover for us. These systems purport to ‘know’ us (alongside the millions of other users), and as such we let them into our most intimate listening spaces and moments. We fetishise and share the datafication of our listening habits, reflected to us annually in Spotify’s “Your 2018 Wrapped” and every Monday in ‘Discover Weekly’, even daily in the “playlists made for you”. As the accuracy of these recommendations increases, so too does our trust in these systems. ‘Bad’ or inaccurate recommendations feel like a betrayal, giving us the sense that the algorithms don’t really know us at all. Users speak of ‘their’ algorithm, as if it belonged to them and not a part of a complex machine learning recommendation system. This paper builds on research which critically examined the music recommendation system that powers Spotify and its many discovery features. The research explored the process through which Spotify automates discovery by incorporating established methods of music consumption, and demonstrated that music recommendation systems such as Spotify are emblematic of the politics of algorithmic culture.

2020 ◽  
Vol 9 (1) ◽  
pp. 1548-1553

Music recommendation systems are playing a vital role in suggesting music to the users from huge volumes of digital libraries available. Collaborative filtering (CF) is a one of the well known method used in recommendation systems. CF is either user centric or item centric. The former is known as user-based CF and later is known as item-based CF. This paper proposes an enhancement to item-based collaborative filtering method by considering correlation among items. Lift and Pearson Correlation coefficient are used to find the correlation among items. Song correlation matrix is constructed by using correlation measures. Proposed method is evaluated on the benchmark dataset and results obtained are compared with basic item-based CF


2020 ◽  
Vol 9 (05) ◽  
pp. 25047-25051
Author(s):  
Aniket Salunke ◽  
Ruchika Kukreja ◽  
Jayesh Kharche ◽  
Amit Nerurkar

With the advancement of technology there are millions of songs available on the internet and this creates problem for a person to choose from this vast pool of songs. So, there should be some middleman who must do this task on behalf of user and present most relevant songs that perfectly fits the user’s taste. This task is done by recommendation system. Music recommendation system predicts the user liking towards a particular song based on the listening history and profile. Most of the music recommendation system available today will give most recently played song or songs which have overall highest rating as suggestions to users but these suggestions are not personalized. The paper purposes how the recommendation systems can be used to give personalized suggestions to each and every user with the help of collaborative filtering which uses user similarity to give suggestions. The paper aims at implementing this idea and solving the cold start problem using content based filtering at the start.


2021 ◽  
Vol 1071 (1) ◽  
pp. 012021
Author(s):  
Abba Suganda Girsang ◽  
Antoni Wibowo ◽  
Jason ◽  
Roslynlia

2020 ◽  
Vol 8 (4) ◽  
pp. 367
Author(s):  
Muhammad Arief Budiman ◽  
Gst. Ayu Vida Mastrika Giri

The development of the music industry is currently growing rapidly, millions of music works continue to be issued by various music artists. As for the technologies also follows these developments, examples are mobile phones applications that have music subscription services, namely Spotify, Joox, GrooveShark, and others. Application-based services are increasingly in demand by users for streaming music, free or paid. In this paper, a music recommendation system is proposed, which the system itself can recommend songs based on the similarity of the artist that the user likes or has heard. This research uses Collaborative Filtering method with Cosine Similarity and K-Nearest Neighbor algorithm. From this research, a system that can recommend songs based on artists who are related to one another is generated.


Sign in / Sign up

Export Citation Format

Share Document