scholarly journals Personalized Suggestion For Music Based On Collaborative Filtering

2020 ◽  
Vol 9 (05) ◽  
pp. 25047-25051
Author(s):  
Aniket Salunke ◽  
Ruchika Kukreja ◽  
Jayesh Kharche ◽  
Amit Nerurkar

With the advancement of technology there are millions of songs available on the internet and this creates problem for a person to choose from this vast pool of songs. So, there should be some middleman who must do this task on behalf of user and present most relevant songs that perfectly fits the user’s taste. This task is done by recommendation system. Music recommendation system predicts the user liking towards a particular song based on the listening history and profile. Most of the music recommendation system available today will give most recently played song or songs which have overall highest rating as suggestions to users but these suggestions are not personalized. The paper purposes how the recommendation systems can be used to give personalized suggestions to each and every user with the help of collaborative filtering which uses user similarity to give suggestions. The paper aims at implementing this idea and solving the cold start problem using content based filtering at the start.

2020 ◽  
Vol 9 (1) ◽  
pp. 1548-1553

Music recommendation systems are playing a vital role in suggesting music to the users from huge volumes of digital libraries available. Collaborative filtering (CF) is a one of the well known method used in recommendation systems. CF is either user centric or item centric. The former is known as user-based CF and later is known as item-based CF. This paper proposes an enhancement to item-based collaborative filtering method by considering correlation among items. Lift and Pearson Correlation coefficient are used to find the correlation among items. Song correlation matrix is constructed by using correlation measures. Proposed method is evaluated on the benchmark dataset and results obtained are compared with basic item-based CF


Author(s):  
Lakshmikanth Paleti ◽  
P. Radha Krishna ◽  
J.V.R. Murthy

Recommendation systems provide reliable and relevant recommendations to users and also enable users’ trust on the website. This is achieved by the opinions derived from reviews, feedbacks and preferences provided by the users when the product is purchased or viewed through social networks. This integrates interactions of social networks with recommendation systems which results in the behavior of users and user’s friends. The techniques used so far for recommendation systems are traditional, based on collaborative filtering and content based filtering. This paper provides a novel approach called User-Opinion-Rating (UOR) for building recommendation systems by taking user generated opinions over social networks as a dimension. Two tripartite graphs namely User-Item-Rating and User-Item-Opinion are constructed based on users’ opinion on items along with their ratings. Proposed approach quantifies the opinions of users and results obtained reveal the feasibility.


2020 ◽  
Vol 8 (4) ◽  
pp. 367
Author(s):  
Muhammad Arief Budiman ◽  
Gst. Ayu Vida Mastrika Giri

The development of the music industry is currently growing rapidly, millions of music works continue to be issued by various music artists. As for the technologies also follows these developments, examples are mobile phones applications that have music subscription services, namely Spotify, Joox, GrooveShark, and others. Application-based services are increasingly in demand by users for streaming music, free or paid. In this paper, a music recommendation system is proposed, which the system itself can recommend songs based on the similarity of the artist that the user likes or has heard. This research uses Collaborative Filtering method with Cosine Similarity and K-Nearest Neighbor algorithm. From this research, a system that can recommend songs based on artists who are related to one another is generated.


2021 ◽  
Vol 13 (2) ◽  
pp. 47-53
Author(s):  
M. Abubakar ◽  
K. Umar

Product recommendation systems are information filtering systems that uses ratings and predictions to make new product suggestions. There are many product recommendation system techniques in existence, these include collaborative filtering, content based filtering, knowledge based filtering, utility based filtering and demographic based filtering. Collaborative filtering techniques is known to be the most popular product recommendation system technique. It utilizes user’s previous product ratings to make new product suggestions. However collaborative filtering have some weaknesses, which include cold start, grey sheep issue, synonyms issue. However the major weakness of collaborative filtering approaches is cold user problem. Cold user problem is the failure of product recommendation systems to make product suggestions for new users. Literature investigation had shown that cold user problem could be effectively addressed using active learning technique of administering personalized questionnaire. Unfortunately, the result of personalized questionnaire technique could contain some user preference uncertainties where the product database is too large (as in Amazon). This research work addresses the weakness of personalized questionnaire technique by applying uncertainty reduction strategy to improve the result obtained from administering personalized questionnaire. In our experimental design we perform four different experiments; Personalized questionnaire approach of solving user based coldstart was implemented using Movielens dataset of 1M size, Personalized questionnaire approach of solving user based cold start was implemented using Movielens dataset of 10M size, Personalized questionnaire with uncertainty reduction was implemented using Movielens dataset of 1M size, and also Personalized  questionnaire with uncertainty reduction was implemented using Movielens dataset of 10M size. The experimental result shows RMSE, Precision and Recall improvement of 0.21, 0.17 and 0.18 respectively in 1M dataset and 0.17, 0.14 and 0.20 in 10M dataset respectively over personalized questionnaire.


2021 ◽  
Author(s):  
Mukkamala. S.N.V. Jitendra ◽  
Y. Radhika

Recommender systems play a vital role in e-commerce. It is a big source of a market that brings people from all over the world to a single place. It has become easy to access and reach the market while sitting anywhere. Recommender systems do a major role in the commerce mobility go smoothly easily as it is a software tool that helps in showing or recommending items based on user’s preferences by analyzing their taste. In this paper, we make a recommender system that would be specifically for music applications. Different people listen to different types of music, so we make note of their taste in music and suggest to them the next song based on their previous choice. This is achieved by using a popularity algorithm, classification, and collaborative filtering. Finally, we make a comparison of the built system for its effectiveness with different evaluation metrics.


Algorithms ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 239 ◽  
Author(s):  
Márcio Guia ◽  
Rodrigo Rocha Silva ◽  
Jorge Bernardino

The growth of the Internet has increased the amount of data and information available to any person at any time. Recommendation Systems help users find the items that meet their preferences, among the large number of items available. Techniques such as collaborative filtering and content-based recommenders have played an important role in the implementation of recommendation systems. In the last few years, other techniques, such as, ontology-based recommenders, have gained significance when reffering better active user recommendations; however, building an ontology-based recommender is an expensive process, which requires considerable skills in Knowledge Engineering. This paper presents a new hybrid approach that combines the simplicity of collaborative filtering with the efficiency of the ontology-based recommenders. The experimental evaluation demonstrates that the proposed approach presents higher quality recommendations when compared to collaborative filtering. The main improvement is verified on the results regarding the products, which, in spite of belonging to unknown categories to the users, still match their preferences and become recommended.


Sign in / Sign up

Export Citation Format

Share Document