Author(s):  
Marcella Peter ◽  
Jacey-Lynn Minoi ◽  
Suriani Ab Rahman

This paper presents a modified kernel-based Active Shape Model for neutralizing and synthesizing facial expressions. In recent decades, facial identity and emotional studies have gained interest from researchers, especially in the works of integrating human emotions and machine learning to improve the current lifestyle. It is known that facial expressions are often associated with face recognition systems with poor recognition rate. In this research, a method of a modified kernel-based active shape model based on statistical-based approach is introduced to synthesize neutral (neutralize) expressions from expressional faces, with the aim to improve the face recognition rate. An experimental study was conducted using 3D geometric facial datasets to evaluate the proposed modified method. The experimental results have shown a significant improvement on the recognition rates.


2009 ◽  
Vol 29 (10) ◽  
pp. 2710-2712 ◽  
Author(s):  
Li-qiang DU ◽  
Peng JIA ◽  
Zong-tan ZHOU ◽  
De-wen HU

2021 ◽  
Vol 69 ◽  
pp. 102807
Author(s):  
Yasser Ali ◽  
Soosan Beheshti ◽  
Farrokh Janabi-Sharifi

Sign in / Sign up

Export Citation Format

Share Document