1990 ◽  
Vol 112 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Kok Kia Chew ◽  
Masayoshi Tomizuka

Perfect regulation may be too stringent a condition in repetitive control. In this paper, the rigid stability requirement is relaxed by including an appropriately chosen filter in the repetitive signal generator. Lacking an internal model, perfect regulation is not assured in the modified system. The steady-state and stochastic performances of the resulting system are analyzed. These analyses reveal that under certain conditions the dual objectives of good steady-state and stochastic performances are conflicting. A high repetitive gain may give good steady-state performance, but the variance propagation of stochastic disturbances is large (extremely large for some choice of a parameter in the modified controller). The converse is true when the repetitive gain is small. The performance of the modified scheme is evaluated by applying it to a simulated disk-file actuator system.


2020 ◽  
Vol 53 (2) ◽  
pp. 6207-6212
Author(s):  
Kiran Kumari ◽  
Bijnan Bandyopadhyay ◽  
Johann Reger ◽  
Abhisek K. Behera

1996 ◽  
Vol 29 (1) ◽  
pp. 1458-1463 ◽  
Author(s):  
Reed D. Hanson ◽  
Tsu-Chin Tsao

2021 ◽  
Vol 15 (5) ◽  
pp. 356-371
Author(s):  
Cláudio M. F. Leite ◽  
Carlos E. Campos ◽  
Crislaine R. Couto ◽  
Herbert Ugrinowitsch

Interacting with the environment requires a remarkable ability to control, learn, and adapt motor skills to ever-changing conditions. The intriguing complexity involved in the process of controlling, learning, and adapting motor skills has led to the development of many theoretical approaches to explain and investigate motor behavior. This paper will present a theoretical approach built upon the top-down mode of motor control that shows substantial internal coherence and has a large and growing body of empirical evidence: The Internal Models. The Internal Models are representations of the external world within the CNS, which learn to predict this external world, simulate behaviors based on sensory inputs, and transform these predictions into motor actions. We present the Internal Models’ background based on two main structures, Inverse and Forward models, explain how they work, and present some applicability.


Sign in / Sign up

Export Citation Format

Share Document