scholarly journals Perancangan Sistem Absensi Berbasis Web Untuk Memprediksi Tingkat Kehadiran Mahasiswa Dengan Metode Monte Carlo

2020 ◽  
Vol 4 (2) ◽  
pp. 10-18
Author(s):  
Efani Desi ◽  
Siti Aliyah
Keyword(s):  

Dalam proses pengumpulan data absensi mahasiswa yang dilakukan oleh dosen secara manual membutuhkan waktu yang cukup lama. Dengan mengembangkan inovasi baru peneliti merancang sebuah sistem untuk memprediksi jumlah mahasiswa yang hadir berbasis web guna mempermudah dosen untuk memprediksikan tingkat kehadiran para mahasiswanya. Metode monte carlo merupakan simulasi probabilistic dimana suatu solusi dari suatu masalah diberikan berdasarkan randomisasi (acak). Tulisan ini menggunakan metode Monte Carlo dapat menyelesaikan permasalahan dengan sampling dari proses bilangan acak (Random Number). struktur dasar metode monte carlo menggunakan Multi Channel-Singel Phase, yaitu yang memiliki satu bentuk login dan memiliki dua atau lebih dari satu terminal Dengan adanya penelitian ini diharapkan sistem absensi berbasis web ini dapat meningkatkan mutu absensi mahasiswa dan prediksi tingkat kehadiran dari mahasiswa yang mempermudah dosen.

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Tao Ren ◽  
Michael F. Modest

With today's computational capabilities, it has become possible to conduct line-by-line (LBL) accurate radiative heat transfer calculations in spectrally highly nongray combustion systems using the Monte Carlo method. In these calculations, wavenumbers carried by photon bundles must be determined in a statistically meaningful way. The wavenumbers for the emitting photons are found from a database, which tabulates wavenumber–random number relations for each species. In order to cover most conditions found in industrial practices, a database tabulating these relations for CO2, H2O, CO, CH4, C2H4, and soot is constructed to determine emission wavenumbers and absorption coefficients for mixtures at temperatures up to 3000 K and total pressures up to 80 bar. The accuracy of the database is tested by reconstructing absorption coefficient spectra from the tabulated database. One-dimensional test cases are used to validate the database against analytical LBL solutions. Sample calculations are also conducted for a luminous flame and a gas turbine combustion burner. The database is available from the author's website upon request.


2008 ◽  
Vol 04 (02) ◽  
pp. 123-141 ◽  
Author(s):  
AREEG ABDALLA ◽  
JAMES BUCKLEY

We apply our new fuzzy Monte Carlo method to certain fuzzy non-linear regression problems to estimate the best solution. The best solution is a vector of triangular fuzzy numbers, for the fuzzy coefficients in the model, which minimizes an error measure. We use a quasi-random number generator to produce random sequences of these fuzzy vectors which uniformly fill the search space. We consider example problems to show that this Monte Carlo method obtains solutions comparable to those obtained by an evolutionary algorithm.


2020 ◽  
Vol 22 (1) ◽  
pp. 119-124
Author(s):  
Volodymyr Kharchenko ◽  
◽  
Hanna Kharchenko ◽  

Introduction. The article deals with the modeling features in the implementation of investment projects using the Monte Carlo method. The purpose of the article is to substantiate the feasibility of using economic and mathematical models to identify the risks of investment projects in agricultural production, taking into account the randomness of factors. Results. The expediency of using this method during the analysis of projects in agriculture is determined. This type of modeling is a universal method of research and evaluation of the effectiveness of open systems, the behavior of which depends on the influence of random factors. Particular attention is paid in such cases to decisions on the implementation of investment projects. The expediency of using this method in the analysis of projects in agriculture is determined. The main characteristics of the investment project are considered: investments involve significant financial costs; investment return can be obtained in a few years; there are elements of risk and uncertainty in forecasting the results of the investment project. The algorithm of the analysis of investment projects consisting of various stages is offered. The importance of investigating the risks of investment projects in agricultural production is substantiated. It is investigated that the basis of the Monte Carlo method is a random number generator, which consists of two stages: generation of a normalized random number (uniformly distributed from 0 to 1) and conversion of a random number into an arbitrary distribution law. The task of choosing an investment project for a pig farm is proposed. The calculations revealed that the amount of the expected NPV is UAH 63,158.80 with a standard deviation of UAH 43,777.90. The coefficient of variation was 0.69, so the risk of this project is generally lower than the average risk of the investment portfolio of the farm. Conclusions. The results of the analysis obtained using the method of Monte Carlo simulation are quite simple to interpret and reflect the change of factors over a significant interval, taking into account the probabilistic nature of economic factors. Thus, this method allows the implementation of the investment project to assess the impact of uncertainty on the final result of the project.


2008 ◽  
Vol 178 (6) ◽  
pp. 401-408 ◽  
Author(s):  
Lih-Yuan Deng ◽  
Rui Guo ◽  
Dennis K.J. Lin ◽  
Fengshan Bai

1968 ◽  
Vol 90 (3) ◽  
pp. 328-332 ◽  
Author(s):  
A. F. Emery ◽  
W. W. Carson

A modification to the Monte Carlo method is described which reduces calculation time and improves the accuracy. This method—termed “Exodus”—is not dependent upon a random number generator and may be applied to any problem which admits of a nodal network.


Sign in / Sign up

Export Citation Format

Share Document