Studies on the Joule Effect in Rubber. I. The Thermal Effect on Stretched Vulcanized Rubber

1935 ◽  
Vol 8 (2) ◽  
pp. 174-176
Author(s):  
Yoshio Tanaka ◽  
Shū Kambara ◽  
Hironosuke Fujita

Abstract The experiments may be summarized as follows: 1. With an increase in the time of cure, the elongation and heating elongation diminish and the Joule effect increases. 2. An increase in the vulcanization coefficient is followed by a decrease in the elongation and heating elongation and an increase in the Joule effect. The increase in the Joule effect, however, has a limit. 3. An organic accelerator reduces the elongation and heating elongation and increases the Joule effect. 4. The greater the degree of mastication the greater the elongation and the heating elongation and the less the Joule effect. 5. By exposure to ultra-violet radiation, the elongation and heating elongation are increased and the Joule effect decreased. 6. A filler increases the heating elongation and decreases the elongation and the Joule effect. Thus samples with relatively high elongations at a definite tension have relatively high heating elongations and low Joule effects. Such specimens seem to have been affected by the disaggregation and depolymerization of the rubber molecules. The effects of the time of cure, mastication, and exposure to ultra-violet radiation prove this fact. Vulcanization increases the Joule effect, but on the other hand, it is accompanied by a disaggregation and depolymerization of the rubber molecules, so the increase in the Joule effect with the progress of vulcanization has a limit. On vulcanization with an accelerator, the combination of sulfur occurs so rapidly that the increase in the Joule effect is predominant. A filler, such as carbon black, behaves only as a diluent of Joule effect. These results lead to the conclusion that the more highly polymerized rubber molecules and their sulfur compounds seem to be the chief factor in the Joule effect of vulcanized rubber.

1935 ◽  
Vol 18 (4) ◽  
pp. 557-571 ◽  
Author(s):  
A. C. Giese ◽  
P. A. Leighton

Paramecia grown under controlled conditions were irradiated at known intensities of light of wave-lengths 2537, 2654, 2804, 3025, and 3130 A. The approximate absorption of the light by the Parmecia was found to be greatest and of the same order of magnitude at the three shortest wave-lengths, considerably less at 3025, and least at 3130 A. Paramecia did not die when irradiated with high dosages of intense light of wave-length 3130 A. At the other wave-lengths 50 per cent vesiculation occurred when between 1012 and 1013 quanta had been absorbed by a Paramecium. This would indicate that a very large number of molecules in a Paramecium are affected before vesiculation occurs.


It was shown by Adler (1) that involuntary muscle is excited and its tone increased by radiation with ultra-violet rays. The excised frog’s stomach, the bladder and the uterus of the rabbit, and that of the guinea-pig, were suspended by him, each in a suitable salt solution, and excited by the mercury vapour lamp. With a glass screen interposed no result was obtained, the visible and longer ultra-violet rays, e. g ., those longer than about 3200 A. U., having no exciting effect. There may be recalled the old observation of Lambert (1760) that the excised iris of fish and frogs reacts to light by contraction; the visible rays in this case act through the pigment which absorbs them (Steinach, Hertel). Contraction of the pigment-free ventral band of the earth-worm can be produced by ultra-violet, but not by visible rays. On the other hand, visible rays excite the pigmented ventral band of Sipunculus nucleus (Hertel, 2). Probably the nerve plexus is excited by the conversion of visible rays into heat in the pigment cells which absorb these rays.


1936 ◽  
Vol 9 (4) ◽  
pp. 570-572 ◽  
Author(s):  
Kurt H. Meyer ◽  
Cesare Ferri

Abstract The action of ultra-violet radiation on rubber has been the object of a long series of investigations. According to van Rossem, rubber is depolymerized under the action of light. Asano on the other hand thinks that ultra-violet light, is able to bring about either polymerization or depolymerization according to its wave-length. More recently Dogadkin and Pantschenkov have carried out experiments in an atmosphere of nitrogen, during the course of which they have found a strong diminution in the viscosity. From this fact they have concluded that light is able to cause depolymerization and micellar degradation. We have undertaken a study of the action of ultra-violet light on rubber in order to prove whether the double cis-linkages of rubber undergo a transposition into trans-linkages, for numerous instances are known where light causes these cis-trans-transpositions. In the case of rubber, one should obtain, therefore, either a hydrocarbon of the gutta-percha type or, if light causes a sort of cis-trans-equilibrium, a hydrocarbon with double cis-linkages distributed irregularly. In our experiments we were extremely careful to exclude oxygen, since some years ago Henri proved that ultra-violet light activates greatly the oxidation of rubber. On the other hand it is known that oxidation causes a diminution in the length of the chains which modifies considerably the physical properties, for example, the viscosity, and which may mask the effect produced by light.


BMJ ◽  
1927 ◽  
Vol 2 (3479) ◽  
pp. 472-472
Author(s):  
M. Weinbren

1931 ◽  
Vol 4 (3) ◽  
pp. 461-485 ◽  
Author(s):  
Marie A. Hinrichs ◽  
Ida T. Genther

Nature ◽  
1958 ◽  
Vol 181 (4614) ◽  
pp. 1013-1013 ◽  
Author(s):  
I. A. ABOUL-ELA

Sign in / Sign up

Export Citation Format

Share Document