Ideal Copolymers and the Second-Order Transitions of Synthetic Rubbers. I. Noncrystalline Copolymers

1953 ◽  
Vol 26 (2) ◽  
pp. 323-335 ◽  
Author(s):  
Manfred Gordon ◽  
James S. Taylor

Abstract Theoretical and practical evidence is put forward to show that copolymers can be treated like solutions of small molecules in the interpretation of packing phenomena, and that ideal volume-additivity of the repeating units in copolymers is frequently realized. On this basis equations are derived for predicting θ, the second-order transition temperature, of binary copolymers from the two second-order transition temperatures of the pure polymers and their coefficients of expansion in the glassy and rubbery states. Previous mechanistic theories of the second-order transition temperature of such copolymers are thus superseded by a general reduction of the problem to the mechanism of thermal expansion. Practical applications to the choice of monomers in producing synthetic rubbers are outlined, and attention is drawn to the importance of second-order transitions in kinetic measurements on the reactions of polymers.

1959 ◽  
Vol 32 (4) ◽  
pp. 1005-1015
Author(s):  
Mark L. Dannis

Abstract When any pure material goes through a change in state, its physical properties change greatly. In each phase the physical properties are relatively constant or change slowly enough with temperature that the rate of change of a property such as volume is a constant. This rate of change of volume is the thermal expansion coefficient, (∂V/V)/∂T. The thermal expansion coefficient is almost constant, experimentally, as long as the temperature range over which measurements are made does not include a phase transition. At the transition temperature, abrupt changes in volume are found as illustrated in Figure 1. Polymeric materials often show changes in physical properties not necessarily accompanied by abrupt changes in volume, even though the expansion coefficient does change. Since the expansion coefficient changes, some change in internal structure is suspected, and the name second-order transition (Tg) has been adopted. This kind of change is roughly diagrammed in Figure 2. This latter change at the second-order transition temperature can be found in every known polymer, even though many polymers possess clear, first-order, crystalline transitions as well. Hevea rubber, for example, has a crystalline melting point of 28° C, compared to its Tg about −70°. These data are shown, copied from Boyer and Spencer, as Figure 3.


1955 ◽  
Vol 28 (2) ◽  
pp. 557-569 ◽  
Author(s):  
D. A. Henderson ◽  
L. A. McLeod

Abstract The second-order transition temperatures of plasticized butadiene-styrene copolymers have been measured by dilatometric techniques. In a series of ester plasticizers, the ability of a given plasticizer to depress the second-order transition temperature of the polymer is related to the swelling effect of the plasticizer on the polymer. The special case of a crystallizing plasticizer (dibutyl sebacate) has been discussed. Common petroleum plasticizers do not appear to behave in a similar manner. The change of coefficient of expansion of the ester-plasticized copolymers is related to the measured transition temperature of the blend.


Sign in / Sign up

Export Citation Format

Share Document