Stress Softening in Natural Rubber Vulcanizates. Part II. Stress Softening Effects in Pure Gum and Filler Loaded Rubbers

1966 ◽  
Vol 39 (4) ◽  
pp. 814-822 ◽  
Author(s):  
J. A. C. Harwood ◽  
L. Mullins ◽  
A. R. Payne

Abstract Considerable stress softening occurs in both gum and filler-loaded vulcanizates and when compared at the same stress the extent of softening is similar in both gum and filled vulcanizates. It thus appears that the softening process is mainly due to the rubber phase alone. Apparent differences between the stress—strain hysteresis loops of gum and filler-loaded vulcanizates are traced to an increase in the effective strain in the rubber phase resulting from the presence of black. This is discussed in Part I of this series. The mechanism of stress softening in gum vulcanizates is not well understood. Possible sources include (1) breaking and remaking of crosslinks during extension, (2) residual local orientation of network chains persisting after recovery, and (3) breaking of network chains.

2003 ◽  
Vol 76 (2) ◽  
pp. 334-347 ◽  
Author(s):  
Tarek M. Madkour ◽  
Rasha A. Azzam

Abstract Stress-strain measurements were performed on dry and swollen natural rubber vulcanizates prepared using both sulfur as the crosslinking agent and aromatic-based bound antioxidants acting as a second crosslinking agent. The aromatic-based antioxidants were synthesized and analyzed spectroscopically in order to relate the final behavior of the vulcanizates to the nature of the crosslink characteristics. The anomalous upturn in the modulus values of these networks in response to the imposed stress was shown to persist in the dry as well as the swollen state. Since the swollen elastomeric chains cannot undergo a strain-induced crystallization, the abnormal upturns in the modulus values in an absence of a filler were explained on the basis of the limited extensibility of the short chains of networks prepared using two different crosslinking agents in line with earlier modeling predictions. Remarkably, the swelling experiments revealed the increase in the crosslink density of the networks in the early stages of the thermal oxidative degradation procedure indicating a post-cure of the chemically bound antioxidants to the elastomeric chains, which incidentally corresponds to a maximum in the modulus values of the networks. The rheological and other mechanical properties such as the hardness were shown not to have been affected as a result of the incorporation of the chemically bound antioxidants.


1967 ◽  
Vol 40 (3) ◽  
pp. 840-848 ◽  
Author(s):  
J. A. C. Harwood ◽  
A. R. Payne

Abstract Stress softening (Mullins effect) in gum natural rubber vulcanizates is similar in magnitude to that in carbon black filled vulcanizates. The amount of stress softening is slightly greater in vulcanizates cured to produce predominantly polysulfide crosslinks than in those containing monosulfide or carbon to carbon crosslinks. The total recovery of stress softening in the vulcanizates containing monosulfide or carbon to carbon crosslinks suggests that the phenomenon is attributable to a quasiirreversible rearrangement of molecular networks due to localized non-affine deformation resulting from short chains reaching the limit of their extensibility. This nonaffine deformation results in a displacement of the network junctions from their initial random state.


1966 ◽  
Vol 39 (5) ◽  
pp. 1544-1552 ◽  
Author(s):  
J. A. C. Harwood ◽  
A. R. Payne

Abstract This paper has confirmed the conclusions of the previous paper that the stress softening (Mullins effect) of a black-loaded vulcanizate is similar in magnitude to the stress softening of a gum rubber if the two vulcanizates are stretched initially to the same stress. The initial stress used in the present work was 180 kg/cm2, which is very near to the breaking stress of these vulcanizates. The similarity of the normalized stress-strain curves for all the vulcanizates, both gum and loaded with 60 phr of different types of black, suggests that the main difference between the stress-strain characteristics of a filled and a pure gum rubber, after the initial stressing cycle, can be accounted for by the strain amplification factor X. The more reinforcing blacks possess the higher X factors, i.e., they stiffen the rubber more than, for example, a fine thermal black. It is concluded that the black is acting mainly in a stiffening capacity due to the hydrodynamic effects of the degenerate carbon black networks. For sulfur crosslinked pure gum vulcanizates, in which the crosslinks are polysulfidic, the stress softening is partly associated with the breakage of polysulfide linkages. These reform in the extended condition and produce a real permanent set, but the major stress softening is attributed to the incomplete recovery of the crosslinked network to its initial random state due to network junctions or similar associations being displaced in a nonaffine way during extension. For example, junctions at the ends of chains which become fully extended at relatively low extensions will be displaced in this way. Thus when the rubber is subsequently strained, the network is already in a preferred disposition.


1976 ◽  
Vol 49 (8) ◽  
pp. 620-627 ◽  
Author(s):  
Hiroshi OKAMOTO ◽  
Junji FURUKAWA ◽  
Shinji INAGAKI

Sign in / Sign up

Export Citation Format

Share Document