Performance and Flow Field of Gravitation Vortex Type Water Turbine using Volute Tank

2021 ◽  
Vol 14 (3) ◽  
pp. 229-246
Author(s):  
Yasuyuki Nishi ◽  
Daichi Sukemori ◽  
Terumi Inagaki
Keyword(s):  
2019 ◽  
Vol 2019.25 (0) ◽  
pp. 19H09
Author(s):  
Daichi SUKEMORI ◽  
Yasuyuki NISHI ◽  
Terumi INAGAKI
Keyword(s):  

2014 ◽  
Vol 620 ◽  
pp. 285-291 ◽  
Author(s):  
Yan Rong Li ◽  
Yasuyuki Nishi ◽  
Terumi Inagaki ◽  
Kentarou Hatano

The purpose of this investigation is to research and develop a new type water turbine, which is appropriate for low-head open channel, in order to effectively utilize the unexploited hydropower energy of small river or agricultural waterway. The application of placing cross-flow runner into open channel as an undershot water turbine has been under consideration. As a result, a significant simplification was realized by removing the casings. However, flow field in the undershot cross-flow water turbine are complex movements with free surface. This means that the water depth around the runner changes with the variation in the rotation speed, and the flow field itself is complex and changing with time. Thus it is necessary to make clear the flow field around the water turbine with free surface, in order to improve the performance of this type turbine. In this research, the performance of the developed water turbine was determined and the flow field was visualized using particle image velocimetry (PIV) technique. The experimental results show that, the water depth between the outer and inner circumferences of the runner decreases as the rotation speed increases. In addition, the fixed-point velocities with different angles at the inlet and outlet regions of the first and second stages were extracted.


2015 ◽  
Vol 2015.23 (0) ◽  
pp. 189-190
Author(s):  
Tomoaki TANEMURA ◽  
Yasuyuki NISHI ◽  
Terumi INAGAKI ◽  
Yanrong LI ◽  
Hiroshi OBATA
Keyword(s):  

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yasuyuki Nishi ◽  
Terumi Inagaki

A gravitation vortex type water turbine, which mainly comprises a runner and a tank, generates electricity by introducing a flow of water into the tank and using the gravitation vortex generated when the water drains from the bottom of the tank. This water turbine is capable of generating electricity using a low head and a low flow rate with relatively simple structure. However, because its flow field has a free surface, this water turbine is extremely complicated, and thus its relevance to performance for the generation of electricity has not been clarified. This study aims to clarify the performance and flow field of a gravitation vortex type water turbine. We conducted experiments and numerical analysis, taking the free surface into consideration. As a result, the experimental and computational values of the torque, turbine output, turbine efficiency, and effective head agreed with one another. The performance of this water turbine can be predicted by this analysis. It has been shown that when the rotational speed increases at the runner inlet, the forward flow area expands. However, when the air area decreases, the backward flow area also expands.


Author(s):  
Tomoki Ikoma ◽  
Shintaro Fujio ◽  
Koichi Masuda ◽  
Chang-Kyu Rheem ◽  
Hisaaki Maeda

This paper describes the possibility of an improvement of torque performance and hydrodynamic forces on a vertical axis type water turbine, used for marine current generating system. The water turbine analyzed here is based on a Darrieus turbine with vertical blades. We considered possibilities of controlling the angle of attack of blades in order to improve the starting performance and to reduce energy loss during the rotation of the turbine. We used blade-element/ momentum theory in order to investigate the variations appearing in torque performance when the angle of attack were controlled. We also proved the validity of our predictions of hydrodynamic forces on the blade and the turbine, made through CFD calculation, by comparing them with the results of corresponding model tests in a current channel. In the corresponding model test we investigated not only the hydrodynamic forces on the turbine with three fixed blades, but also the inline force and the cross-flow force on the rotating turbine with three blades. Regarding the cyclic pitching of turbine blades, results suggest that significant increase in average turbine torque is possible.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Kideok Ro ◽  
Baoshan Zhu

In this study, a reciprocating-type water turbine model that applies the principle of the Weis-Fogh mechanism was proposed, and the model's unsteady flow field was calculated by an advanced vortex method. The primary conditions were as follows: wing chord C=1, wing shaft stroke length hs=2.5C, and the maximum opening angle of the wing α=36 deg. The dynamic characteristics and unsteady flow fields of a Weis-Fogh type water turbine were investigated with velocity ratios U/V = 1.0 ∼ 3.0. Force coefficients Cu and Cv acting on the wing in the U and V directions, respectively, were found to have a strong correlation each other. The size of a separated region on the back face of the wing increased as the velocity ratio increased and as the wing approached the opposite wall. The rapid drop in Cv during a stroke increased as the velocity ratio increased, and the average Cu and Cv increased as the velocity ratio increased. The maximum efficiency of this water turbine was 14.1% at U/V = 2.0 for one wing.


Author(s):  
Yasuo TAKAMATSU ◽  
Akinori FURUKAWA ◽  
Kusuo OKUMA ◽  
Kazuki TAKENOUCHI ◽  
Toshihiko SASAKI ◽  
...  

1981 ◽  
Vol 14 (2) ◽  
pp. 2041-2045
Author(s):  
M. Yamada ◽  
H. Matsuoka ◽  
H. Tai ◽  
I. Matsuda

Sign in / Sign up

Export Citation Format

Share Document