scholarly journals Appropriate Probability Density Function of Convex Bodies.

Author(s):  
Khalid A Ateia ◽  
Tarig A Abdelhaleem

We investigate under the notion of Large Deviation Principle & Concentration of Measure as a technique,the ability of estimating the probability density function of any random vector in the space Rn. We found that an appropriate probability distribution for any convex body in the space is sub – Gaussian.

Radiocarbon ◽  
1980 ◽  
Vol 22 (4) ◽  
pp. 1021-1027 ◽  
Author(s):  
Adam Walanus ◽  
Mieczysław F Pazdur

Problems of the statistical interpretation of radiocarbon age measurements of old samples are discussed, based on the notion of fiducial probability distribution. A probability density function of age has been given. A detailed discussion of different facets of the probability distribution of age has led us to the confirmation of the use of 2σ as the best limiting value between the regions of finite and infinite dates. It has been proposed to make use of the principle of constant probability P = 0.68 in the regions of both finite and infinite ages instead of the criterion N + kσ.


2019 ◽  
Vol 892 ◽  
pp. 284-291
Author(s):  
Ahmed S.A. Badawi ◽  
Nurul Fadzlin Hasbullah ◽  
Siti Hajar Yusoff ◽  
Sheroz Khan ◽  
Aisha Hashim ◽  
...  

The need of clean and renewable energy, as well as the power shortage in Gaza strip with few wind energy studies conducted in Palestine, provide the importance of this paper. Probability density function is commonly used to represent wind speed frequency distributions for the evaluation of wind energy potential in a specific area. This study shows the analysis of the climatology of the wind profile over the State of Palestine; the selections of the suitable probability density function decrease the wind power estimation error percentage. A selection of probability density function is used to model average daily wind speed data recorded at for 10 years in Gaza strip. Weibull probability distribution function has been estimated for Gaza based on average wind speed for 10 years. This assessment is done by analyzing wind data using Weibull probability function to find out the characteristics of wind energy conversion. The wind speed data measured from January 1996 to December 2005 in Gaza is used as a sample of actual data to this study. The main aim is to use the Weibull representative wind data for Gaza strip to show how statistical model for Gaza Strip over ten years. Weibull parameters determine by author depend on the pervious study using seven numerical methods, Weibull shape factor parameter is 1.7848, scale factor parameter is 4.3642 ms-1, average wind speed for Gaza strip based on 10 years actual data is 2.95 ms-1 per a day so the behavior of wind velocity based on probability density function show that we can produce energy in Gaza strip.


1974 ◽  
Vol 11 (4) ◽  
pp. 642-651 ◽  
Author(s):  
D. Jerwood

In this paper, the cost of the carrier-borne epidemic is considered. The definition of duration, as used by Weiss (1965) and subsequent authors, is generalised and the probability distribution for the number of located carriers is obtained. One component of cost, namely the area generated by the trajectory of carriers, is examined and its probability density function derived. The expected area generated is then shown to be proportional to the expected number of carriers located during the epidemic, a result which has an analogue in the general stochastic epidemic.


2020 ◽  
Author(s):  
Takuya Yabu

I thought about whether to receive positive or negative emotions from an event from the perspective of human character. Regarding the human character, I define it as a process of selecting one's emotion x so that the received emotion x becomes x=0 with respect to the event X and the reaction of the other party when one's thoughts and reactions occur as the accompanying reactions. Mathematically modeled it, the probability density function of how much to select an emotion has a fixed probability distribution. I also described how to deal with one's character as an application of this model.


1980 ◽  
Vol 12 (3) ◽  
pp. 672-688 ◽  
Author(s):  
Yoshifusa Ito

Let N be a stationary renewal process with a probability density function f(t). Suppose that N can be expressed as the superposition of a finite number of i.i.d. stationary components N(1), …, N(p) (p≧2). Then, under a supplementary condition on f(t), N and N(1), …, N(p) are all Poisson. This is proved by using recurrence relations given in Ito (1978) for the probability distribution of i.i.d. components of a superposition process.


2006 ◽  
Vol 19 (4) ◽  
pp. 497-520 ◽  
Author(s):  
Adam Hugh Monahan

Abstract The probability distribution of sea surface wind speeds, w, is considered. Daily SeaWinds scatterometer observations are used for the characterization of the moments of sea surface winds on a global scale. These observations confirm the results of earlier studies, which found that the two-parameter Weibull distribution provides a good (but not perfect) approximation to the probability density function of w. In particular, the observed and Weibull probability distributions share the feature that the skewness of w is a concave upward function of the ratio of the mean of w to its standard deviation. The skewness of w is positive where the ratio is relatively small (such as over the extratropical Northern Hemisphere), the skewness is close to zero where the ratio is intermediate (such as the Southern Ocean), and the skewness is negative where the ratio is relatively large (such as the equatorward flank of the subtropical highs). An analytic expression for the probability density function of w, derived from a simple stochastic model of the atmospheric boundary layer, is shown to be in good qualitative agreement with the observed relationships between the moments of w. Empirical expressions for the probability distribution of w in terms of the mean and standard deviation of the vector wind are derived using Gram–Charlier expansions of the joint distribution of the sea surface wind vector components. The significance of these distributions for improvements to calculations of averaged air–sea fluxes in diagnostic and modeling studies is discussed.


1980 ◽  
Vol 12 (03) ◽  
pp. 672-688
Author(s):  
Yoshifusa Ito

Let N be a stationary renewal process with a probability density function f(t). Suppose that N can be expressed as the superposition of a finite number of i.i.d. stationary components N (1), …, N (p) (p≧2). Then, under a supplementary condition on f(t), N and N (1), …, N (p) are all Poisson. This is proved by using recurrence relations given in Ito (1978) for the probability distribution of i.i.d. components of a superposition process.


2020 ◽  
Author(s):  
Takuya Yabu

I thought about how to get the magnitude from the event and the reaction of the other party. Evaluating the values of events and opponents' reactions using a one-dimensional random walk shows that the probability density function of the values of events and opponents' reactions has a fixed probability distribution. Similarly, I have shown that the functions that determine the magnitude of events and reactions are also represented by a fixed distribution. Therefore, I also showed that when individuals gather to form a group, the functions that determine the magnitude of events and reactions as a group are also represented by a fixed distribution. Also, as an application example of this model, I described how to show my reaction and what to do when the magnitude of the event is large.


1974 ◽  
Vol 11 (04) ◽  
pp. 642-651 ◽  
Author(s):  
D. Jerwood

In this paper, the cost of the carrier-borne epidemic is considered. The definition of duration, as used by Weiss (1965) and subsequent authors, is generalised and the probability distribution for the number of located carriers is obtained. One component of cost, namely the area generated by the trajectory of carriers, is examined and its probability density function derived. The expected area generated is then shown to be proportional to the expected number of carriers located during the epidemic, a result which has an analogue in the general stochastic epidemic.


Sign in / Sign up

Export Citation Format

Share Document