scholarly journals Tissue or blood: which is more suitable for detection of EGFR mutations in non-small cell lung cancer?

2018 ◽  
Vol 33 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Rong Biaoxue ◽  
Yang Shuanying

Background: Many studies have evaluated the accuracy of EGFR mutation status in blood against that in tumor tissues as the reference. We conducted this systematic review and meta-analysis to assess whether blood can be used as a substitute for tumor tissue in detecting EGFR mutations. Methods: Investigations that provided data on EGFR mutation status in blood were searched in the databases of Medline, Embase, Ovid Technologies and Web of Science. The detect efficiency of EGFR mutations in paired blood and tissues was compared using a random-effects model of meta-analysis. Pooled sensitivity and specificity and diagnostic accuracy were calculated by receiver operating characteristic curve. Results: A total of 19 studies with 2,922 individuals were involved in this meta-analysis. The pooled results showed the positive detection rate of EGFR mutations in lung cancer tissues was remarkably higher than that of paired blood samples (odds ratio [OR] = 1.47, p<0.001). The pooled sensitivity and specificity of blood were 0.65 and 0.91, respectively, and the area under the receiver operating characteristic curve was 0.89. Conclusions: Although blood had a better specificity for detecting EGFR mutations, the absence of blood positivity should not necessarily be construed as confirmed negativity. Patients with negative results for blood should decidedly undergo further biopsies to ascertain EGFR mutations.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ying Wang ◽  
Jingyi Zhao ◽  
Yinhui Yao ◽  
Dan Zhao ◽  
Shiquan Liu

Background. The present study was aimed to investigate the value of blood interleukin-27 (IL-27) as a diagnostic biomarker of sepsis. Methods. We searched PubMed, EMBASE, the Cochrane Library, and the reference lists of relevant articles. All studies published up to October 21, 2020, which evaluated the accuracy of IL-27 levels for the diagnosis of sepsis were included. All the selected papers were assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). We used a bivariate random effects model to estimate sensitivity, specificity, diagnostic odds ratios (DOR), and a summary receiver operating characteristic curve (SROC). Deeks’ funnel plot was used to illustrate the potential presence of publication bias. Results. This meta-analysis included seven articles. The pooled sensitivity, specificity, and DOR were 0.85 (95% CI, 0.72-0.93), 0.72 (95% CI, 0.42-0.90), and 15 (95% CI, 3-72), respectively. The area under the summary receiver operating characteristic curve was 0.88 (95% CI, 0.84-0.90). The pooled I 2 statistic was 96.05 for the sensitivity and 96.65 for the specificity in the heterogeneity analysis. Deeks’ funnel plot indicated no publication bias in this meta-analysis ( P = 0.07 ). Conclusions. The present results showed that IL-27 is a reliable diagnostic biomarker of sepsis, but it should be investigated in combination with other clinical tests and results.


2019 ◽  
Vol 30 (7-8) ◽  
pp. 221-228
Author(s):  
Shahab Hajibandeh ◽  
Shahin Hajibandeh ◽  
Nicholas Hobbs ◽  
Jigar Shah ◽  
Matthew Harris ◽  
...  

Aims To investigate whether an intraperitoneal contamination index (ICI) derived from combined preoperative levels of C-reactive protein, lactate, neutrophils, lymphocytes and albumin could predict the extent of intraperitoneal contamination in patients with acute abdominal pathology. Methods Patients aged over 18 who underwent emergency laparotomy for acute abdominal pathology between January 2014 and October 2018 were randomly divided into primary and validation cohorts. The proposed intraperitoneal contamination index was calculated for each patient in each cohort. Receiver operating characteristic curve analysis was performed to determine discrimination of the index and cut-off values of preoperative intraperitoneal contamination index that could predict the extent of intraperitoneal contamination. Results Overall, 468 patients were included in this study; 234 in the primary cohort and 234 in the validation cohort. The analyses identified intraperitoneal contamination index of 24.77 and 24.32 as cut-off values for purulent contamination in the primary cohort (area under the curve (AUC): 0.73, P < 0.0001; sensitivity: 84%, specificity: 60%) and validation cohort (AUC: 0.83, P < 0.0001; sensitivity: 91%, specificity: 69%), respectively. Receiver operating characteristic curve analysis also identified intraperitoneal contamination index of 33.70 and 33.41 as cut-off values for feculent contamination in the primary cohort (AUC: 0.78, P < 0.0001; sensitivity: 87%, specificity: 64%) and validation cohort (AUC: 0.79, P < 0.0001; sensitivity: 86%, specificity: 73%), respectively. Conclusions As a predictive measure which is derived purely from biomarkers, intraperitoneal contamination index may be accurate enough to predict the extent of intraperitoneal contamination in patients with acute abdominal pathology and to facilitate decision-making together with clinical and radiological findings.


2021 ◽  
pp. 096228022199595
Author(s):  
Yalda Zarnegarnia ◽  
Shari Messinger

Receiver operating characteristic curves are widely used in medical research to illustrate biomarker performance in binary classification, particularly with respect to disease or health status. Study designs that include related subjects, such as siblings, usually have common environmental or genetic factors giving rise to correlated biomarker data. The design could be used to improve detection of biomarkers informative of increased risk, allowing initiation of treatment to stop or slow disease progression. Available methods for receiver operating characteristic construction do not take advantage of correlation inherent in this design to improve biomarker performance. This paper will briefly review some developed methods for receiver operating characteristic curve estimation in settings with correlated data from case–control designs and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using conditional receiver operating characteristic curves will be demonstrated. The proposed approach will use information about correlation among biomarker values, producing conditional receiver operating characteristic curves that evaluate the ability of a biomarker to discriminate between affected and unaffected subjects in a familial paired design.


2016 ◽  
Vol 25 (6) ◽  
pp. 2750-2766 ◽  
Author(s):  
Hélène Jacqmin-Gadda ◽  
Paul Blanche ◽  
Emilie Chary ◽  
Célia Touraine ◽  
Jean-François Dartigues

Semicompeting risks and interval censoring are frequent in medical studies, for instance when a disease may be diagnosed only at times of visit and disease onset is in competition with death. To evaluate the ability of markers to predict disease onset in this context, estimators of discrimination measures must account for these two issues. In recent years, methods for estimating the time-dependent receiver operating characteristic curve and the associated area under the ROC curve have been extended to account for right censored data and competing risks. In this paper, we show how an approximation allows to use the inverse probability of censoring weighting estimator for semicompeting events with interval censored data. Then, using an illness-death model, we propose two model-based estimators allowing to rigorously handle these issues. The first estimator is fully model based whereas the second one only uses the model to impute missing observations due to censoring. A simulation study shows that the bias for inverse probability of censoring weighting remains modest and may be less than the one of the two parametric estimators when the model is misspecified. We finally recommend the nonparametric inverse probability of censoring weighting estimator as main analysis and the imputation estimator based on the illness-death model as sensitivity analysis.


Sign in / Sign up

Export Citation Format

Share Document