scholarly journals Design of a Test bed and Performance Evaluation for a Hovering Type Autonomous Underwater Vehicle under Open Control Platform

2010 ◽  
Vol 16 (5) ◽  
pp. 489-497 ◽  
Author(s):  
Jae-Weon Choi ◽  
Tae-Kyu Ha ◽  
Eko Henfri Binugroho ◽  
Chang-Ho Yu ◽  
Young-Bong Seo
2012 ◽  
Vol 152-154 ◽  
pp. 1195-1201
Author(s):  
Kuan Meng Tan ◽  
Tien Fu Lu ◽  
Amir Anvar

One of the key aspects in designing an Autonomous Underwater Vehicle (AUV) simulation framework is sensor modeling. This paper presents specifically the underwater sonar sensor modeling structure used in the proposed AUV simulation framework. This sensor model covers the mathematical aspects from the field of acoustics which mimics real world sensors. Simplified sonar signal models are widely used however rarely discussed in the literature. Based on this designed simulation framework, simple scenario using different sonar configuration is shown and discussed. This paper shows the formulation of a typical side-scan sonar with emphasis on the assumptions which leads to the simplification of the sonar model. The sonar sensor model is built based on a developed AUV test-bed which was done previously in the University of Adelaide.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Nanang Syahroni ◽  
Jae Weon Choi

This paper presents an optimal regulator for depth control simulation of an autonomous underwater vehicle (AUV) using a new approach of decentralized system environment called open control platform (OCP). Simulation results are presented to demonstrate performance of the proposed method.


Author(s):  
M. Chyba ◽  
T. Haberkorn ◽  
R. N. Smith ◽  
S. K. Choi ◽  
Scott Weatherwax

From Pontryagin’s Maximum Principle to the Duke Kahanamoku Aquatic Complex; we develop the theory and generate implementable time efficient trajectories for a test-bed autonomous underwater vehicle (AUV). This paper is the beginning of the journey from theory to implementation. We begin by considering pure motion trajectories and move into a rectangular trajectory which is a concatenation of pure surge and pure sway. These trajectories are tested using our numerical model and demonstrated by our AUV in the pool. In this paper we demonstrate that the above motions are realizable through our method, and we gain confidence in our numerical model. We conclude that using our current techniques, implementation of time efficient trajectories is likely to succeed.


Sign in / Sign up

Export Citation Format

Share Document