Flight Dynamics Modeling and Controller Design of Smart Drone with Transition Flight Mode in Longitudinal Motion

2017 ◽  
Vol 23 (7) ◽  
pp. 537-545
Author(s):  
Beomgook Seo ◽  
Sangho Kim ◽  
Young Jae Lee ◽  
Sangkyung Sung
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ke Lu ◽  
Chunsheng Liu ◽  
Chunhua Li ◽  
Renliang Chen

The tilt-rotor aircraft has often been proposed as a means to increase the maximum speed of the conventional helicopter. The tilt-rotor aircraft consists of three primary flight modes that are the helicopter flight mode in low forward speed flight, airplane flight mode in high forward speed flight, and conversion flight mode. The aim of this paper is to develop a nonlinear flight dynamics mathematical modeling method of tilt-rotor aircraft and investigate the dynamic stability characteristics of tilt-rotor aircraft. First, a nonlinear tilt-rotor aircraft flight dynamics model is developed. The trim and linearized results are present to verify the model. Then, using a numerical differentiation technique, the dynamic stability of the tilt-rotor aircraft is assessed. The results show that the flight speed and nacelle angle would affect the magnitude and the trend of the aerodynamic derivatives. The damping of the pitch short period mode and the Dutch roll mode is insensitive to flight speed while they could be affected by nacelle angle. In all flight modes, as flight speed increases, the natural modes become more stable.


Author(s):  
Martin Leitner ◽  
Andreas Knoblach ◽  
Thiemo M. Kier ◽  
Claudia P. Moreno ◽  
Aditya Kotikalpudi ◽  
...  

2021 ◽  
Author(s):  
Shanyong Zhao ◽  
Ke Lu ◽  
Shangjing Wu ◽  
Dacheng Su

2011 ◽  
Vol 63-64 ◽  
pp. 533-536
Author(s):  
Xiao Jun Xing ◽  
Jian Guo Yan

With the purpose of overcoming the defect that unmanned air vehicles (UAVs) are easily disturbed by air current and tend to be unstable, an augmented-stability controller was developed for a certain UAV’s longitudinal motion. According to requirements of short-period damping ratio and control anticipation parameter (CAP) in flight quality specifications of GJB185-86 and C*, linear quadratic regulator (LQR) theory was used in the augmented-stability controller’s design. The simulation results show that the augmented-stability controller not only improves the UAV’s stability and dynamic characteristics but also enhances the UAV’s robustness.


2016 ◽  
Vol 24 (3) ◽  
pp. 492-504 ◽  
Author(s):  
Mohammadreza Faieghi ◽  
Aliakbar Jalali ◽  
Seyed Kamal-e-ddin Mousavi Mashhadi ◽  
Dumitru Baleanu

The cruise control problem of high speed trains (HSTs) is revisited in this paper. Despite the ongoing trend of using Lyapunov-based approaches, the concept of passivity is used as the basis of cruise controller design. To begin with, the Euler–Lagrange modeling of longitudinal motion of HST is introduced. Consequently, passivity properties of the system is investigated and it is shown that the system presents a strictly passive input–output map output. This property is utilized to design a controller based on an energy-shaping method. Since the controller benefits from the passivity property of the train, it is structurally simple and computationally efficient while ensuring asymptotic velocity tracking. In addition, as revealed in our robust analysis, the controller is capable of dealing with bounded perturbations. That is to say, boundedness of velocity tracking errors is guaranteed for sufficiently large control feedback gains. The obtained theoretical results have been verified by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document