Tribological behavior and mechanical properties of friction stir processed HDPE/Fe-Fe3O4 composites

2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Saeed Karimi ◽  
Seyed Mohammad Arab ◽  
Seyyed Reza Hosseini Zeidabadi ◽  
Sirus Javadpour

In the current work, high density polyethylene (HDPE) composites were fabricated via Friction Stir Processing (FSP). A two-phase Fe-Fe3O4 powder was used as the reinforcing agents. The extremely low cost powder was obtained from shot-blasting of as-forged low carbon steel components. X-ray diffraction (XRD) was used to phase analysis and evaluation of the purity of the as-received powder. The size distribution of the powder was determined by Laser Particle Size Analysis (LPSA). Also, Scanning Electron Microscopy (SEM) was employed to investigate the particles morphology. The processing used a cylindrical tool to impose the severe plastic deformation and material stirring in order to improve the mechanical properties and particles distribution. The tribological and mechanical properties of the fabricated samples were examined. According to the results, both the friction coefficient and specific wear rate of FSPed samples reduced remarkably. The hardness and tensile strength of the FSPed composites were higher than the FSPed HDPE samples; however, their elongations were lower.

2012 ◽  
Vol 727-728 ◽  
pp. 1164-1169 ◽  
Author(s):  
Mônica Beatriz Thürmer ◽  
Rafaela Silveira Vieira ◽  
Juliana Machado Fernandes ◽  
Wilbur Trajano Guerin Coelho ◽  
Luis Alberto Santos

Calcium phosphate cements have bioactivity and osteoconductivity and can be molded and replace portions of bone tissue. The aim of this work was to study the obtainment of α-tricalcium phosphate, the main phase of calcium phosphate cement, by wet reaction from calcium nitrate and phosphoric acid. There are no reports about α-tricalcium phosphate obtained by this method. Two routes of chemical precipitation were evaluated and the use of two calcinations temperatures to obtain the phase of cement. The influence of calcination temperature on the mechanical properties of cement was evaluated. Cement samples were characterized by particle size analysis, X-ray diffraction, mechanical strength and scanning electron microscopy. The results demonstrate the strong influence of synthesis route on the crystalline phases of cement and the influence of concentration of reactants on the product of the reaction, as well as, on the mechanical properties of cement.


2013 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
N. Sahu ◽  
◽  
R. K. Duchaniya ◽  

The ZnO-CdO nanocomposite was prepared by sol-gel method by using their respective nitrates. It is a simple and low cost method to prepare nanocomposites. The drying temperature and drying period of prepared gel was varied during the synthesis process. The prepared samples were characterized by using scanning electron microscope (SEM), particle size analysis (PSA), X-ray diffraction (XRD) and photoluminescence spectroscopy (PL) to get surface morphology, idea of getting particle of nanosized range so that further characterizations can be done, to study the optical property of synthesized nanocomposite and measure the band gap . The grain size determined by Scherrer’s formula was found to be between 30-50 nm.


2018 ◽  
Vol 4 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Mohamed Mohamed Abd Elnabi ◽  
Tarek Abd Elsadek Osman ◽  
Alaa Eldeen El Mokadem ◽  
Abou Bakr Elshalakany 

The purpose of this research is to use friction stir welding (FSW) to join dissimilar  metals, annealed low carbon steel and A1050 pure aluminum. A butt joint with a similar sheet thickness of 1.9 mm was applied. The novelties of the research are relatively using high generated heat produced by a combination of low traverse speed and high rotational speed to perform the dissimilar joints and using a tool material (K107cold work tool steel) which has not been used in FSW with tool cooling. The present work studied the effect of FSW variables such as tilt angle, tool cooling, base metal location on mechanical properties. Tensile tests were used to evaluate the mechanical properties of the dissimilar joints. The microstructure specimens were examined using a scanning electron microscope (SEM). Sound dissimilar joints were successfully produced. The maximum joint efficiency obtained in this study is 51.7% of the aluminum tensile strength. The microstructure images showed that many steel fragments were sheared off from the steel surface by the tool action and scattered in the weld nugget, a continuous intermetallic compound (IMC) layer formed at the interface, the thickness of the IMC layer at the interface decreased in the thickness direction of the weld. FeAl3 IMC phase was only observed at the interface.


Cerâmica ◽  
2002 ◽  
Vol 48 (306) ◽  
pp. 102-107 ◽  
Author(s):  
G. P. Souza ◽  
R. Sanchez ◽  
J. N. F. de Holanda

This work presents the results of a study on the suitability of the clayey materials from Campos-RJ (Brazil) region for application in structural ceramic. The clayey materials, i.e. red clays available in this region, were selected so that their characteristics regarding chemical composition, rational analysis, X-ray diffraction, particle size analysis, thermal behavior, plasticity and as dried and fired properties could be studied. The results revealed that the studied samples are typically kaolinite based materials. In addition, it was found that almost all properties of these materials are led to the manufacture of structural ceramic. Mechanical strength test data resulted in Weibull distributions.


2018 ◽  
Vol 27 (12) ◽  
pp. 6709-6718 ◽  
Author(s):  
L. Zhou ◽  
R. X. Zhang ◽  
H. F. Yang ◽  
Y. X. Huang ◽  
X. G. Song

Sign in / Sign up

Export Citation Format

Share Document