FRICTION CLUTCH CONTROL IN THE GEARBOX WITH A DEMULTIPLICATOR

Author(s):  
Vladimir Petrovich Tarasik ◽  
Yury Sergeyevich Romanovich ◽  
Roman Vladimirovich Pliakin
2018 ◽  
Vol 17 (5) ◽  
pp. 421-431 ◽  
Author(s):  
Le Van Nghia

The paper presents description of a mechatronic control system for mechanical transmission of a 20-ton truck, as well as its adaptive start-up algorithm, transient process behavior which significantly affects durability of automated power unit elements, vehicle movement smoothness and driver’s comfort when driving. A multidisciplinary model of the mechatronic control system has been developed in the software package Imagine Lab AMESim because its power unit including a diesel engine, a dry frictional two-disc clutch, a main mechanical stepped gearbox and an additional gearbox has electrical components besides mechanical and pneumatic ones. The given model allows to test complex control algorithms and analyze the behavior of intelligent systems in the early designing stages. The research has been carried out on the basis of the test complex at Department “Automobiles”, Automotive and Tractor Faculty, Belarusian National Technical University. Research results confirm an adequacy of the AMESim developed multidisciplinary model. Feedback on the increment of an angular velocity difference between driving and driven parts of the friction clutch has been introduced for precise friction clutch control. Threshold values of a feedback parameter have been determined on the basis of the developed computer model and these values will be used for programming a microprocessor unit when implementing an adaptive algorithm for a truck start-up process


Author(s):  
M.P. Shishkarev ◽  

The method of calculating an adaptive friction clutch with a separate power closure (the first option) is given.The features of calculating the values of the clutch control device parameters to ensure the highest accuracy of operation at a given nominal load capacity are shown. Explanations are given when calculating the values of the control device parameters depending on the shape of the load characteristic of the coupling.


Author(s):  
Sooyoung Kim ◽  
Seibum B Choi ◽  
Saebom Kim

This study proposes a new design for a friction clutch actuator using the self-energizing principle for vehicle applications such that the power consumption for clutch control is significantly reduced. The self-energizing effect can be created by simply adding wedge structures to a conventional clutch system, and it assists in significantly reducing the actuation energy of the clutch with little additional cost. In this paper, a mathematical model of the clutch actuation system is derived on the basis of static force analyses with particular emphasis on the torque amplification factor due to the self-energizing effect. The slope angles of the wedges in the proposed clutch actuator are determined in order that the clutch system ensures appropriate torque amplification while considering various factors such as the variations in the friction coefficient and the return spring force. In addition, model-based analyses of the new clutch actuator system are performed in order to predict the dynamic effects of the self-energizing mechanism on the system, particularly for the clutch engagement process. The feasibility of the proposed clutch design and its high energy efficiency are verified experimentally using three prototypes with different slope angles.


1905 ◽  
Vol 59 (1533supp) ◽  
pp. 24564-24565
Author(s):  
Emile Guarini
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document