Design of a highly efficient friction clutch apparatus for vehicle applications using a self-energizing mechanism

Author(s):  
Sooyoung Kim ◽  
Seibum B Choi ◽  
Saebom Kim

This study proposes a new design for a friction clutch actuator using the self-energizing principle for vehicle applications such that the power consumption for clutch control is significantly reduced. The self-energizing effect can be created by simply adding wedge structures to a conventional clutch system, and it assists in significantly reducing the actuation energy of the clutch with little additional cost. In this paper, a mathematical model of the clutch actuation system is derived on the basis of static force analyses with particular emphasis on the torque amplification factor due to the self-energizing effect. The slope angles of the wedges in the proposed clutch actuator are determined in order that the clutch system ensures appropriate torque amplification while considering various factors such as the variations in the friction coefficient and the return spring force. In addition, model-based analyses of the new clutch actuator system are performed in order to predict the dynamic effects of the self-energizing mechanism on the system, particularly for the clutch engagement process. The feasibility of the proposed clutch design and its high energy efficiency are verified experimentally using three prototypes with different slope angles.

2012 ◽  
Vol 482-484 ◽  
pp. 1418-1425 ◽  
Author(s):  
Li You Xu ◽  
Yan Ke Zhao ◽  
Zhi Li Zhou ◽  
Zhi Qiang Xi ◽  
Ming Xing Xing

Based on the analysis of the characteristics of tractor clutch and the engagement process at start-up working condition, the dynamics model of the clutch start-up working condition is established, then clutch engaging control approaches are discussed with emphasis, therefore the clutch engaging control law of “fast-slow-fast” is obtained. According to the clutch control strategy, clutch simulating analysis of an AMT tractor at the starting conditions will be in process by Matlab/Simulink on the basis of well design of fuzzy controller. The analysis result shows that the use of fuzzy control theory could effectively control the engagement process of AMT tractor clutch at start-up working condition.


2011 ◽  
Vol 148-149 ◽  
pp. 1149-1153
Author(s):  
Wu Chao Zhang ◽  
Yong Zhai

The clutch control is one of the cores and most difficult issues in the development of an AMT system. In this paper the pneumatic clutch engagement characteristic is analyzed. Thereto, a simulation model of an automotive powertrain comprises a diesel engine, drivetrain and wheels driving a vehicle through tire-road adhesion are built using Matlab/Simulink. In the simulation, a refined control law of constant engine speed in part process is proposed and tested. The engaging speed and displacement of the clutch vary with the accelerate paddle opening, engine speed, clutch driven plate speed and gears according the control law. Field experiment results show that the control strategy fulfills the system requirements.


2019 ◽  
Vol 71 (1) ◽  
pp. 94-101 ◽  
Author(s):  
Yanzhong Wang ◽  
Yuan Li ◽  
Yang Liu ◽  
Wei Zhang

PurposeTo gain in-depth understandings of engaging characteristics, the purpose of this paper is to improve the model of wet clutches to predict the transmitted torque during the engagement process.Design/methodology/approachThe model of wet clutch during the engagement process took main factors into account, such as the centrifugal effect of lubricant, permeability of friction material, slippage factor of lubricant on contact surface and roughness of contact surface. Reynolds’ equation was derived to describe the hydrodynamic lubrication characteristics of lubricant film between the friction plate and the separated plate, and an elastic-plastic model of the rough surfaces contact based on the finite element analysis was used to indicate the loading force and friction torque of the contact surface.FindingsThe dynamic characteristics of wet clutch engagement time, relative speed, hydrodynamic lubrication of lubricating oil, rough surface contact load capacity and transfer torque can be obtained by the wet clutch engagement model. And the influence of the groove shape and depth on the engaging characteristics is also analyzed.Originality/valueThe mathematical model of the wet clutch during the engagement process can be used to predict the engaging characteristics of the wet clutch which could be useful to the design of the wet clutch.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Oday I. Abdullah ◽  
Josef Schlattmann

The numerical simulation of the friction clutch system (pressure plate, clutch disc, and flywheel) during the full engagement period (assuming no slipping between contact surfaces) is carried out using finite element method. Two types of load condition considered affect on the clutch elements during the full engagement period are the contact pressure of diaphragm spring and the centrifugal force. The study of the pressure distribution between the contact surfaces and the factors affecting it is one of the fundamentals in the process of designing the friction clutch to obtain accurate estimation of the temperature distribution during the slipping period and the contact stresses during the full engagement period. The investigation covers the effect of the contact stiffness factor FKN on the pressure distribution between contact surfaces, stresses, and penetration. The penalty and augmented Lagrange algorithms have been used to obtain the pressure distribution between contact surfaces. ANSYS13 software has been used to perform the numerical calculation in this paper.


Synthese ◽  
2021 ◽  
Author(s):  
Sophie Ritson

AbstractThis paper provides an account of the nature of creativity in high-energy physics experiments through an integrated historical and philosophical study of the current and planned attempts to measure the self-coupling of the Higgs boson by two experimental collaborations (ATLAS and CMS) at the Large Hadron Collider (LHC) and the planned High Luminosity Large Hadron Collider (HL-LHC). A notion of creativity is first identified broadly as an increase in the epistemic value of a measurement outcome from an unexpected transformation, and narrowly as a condition for knowledge of the measurement of the self-coupling of the Higgs. Drawing upon Tal’s model-based epistemology of measurement (2012) this paper shows how without change to ‘readings’ (or ‘instrument indicators’) a transformation to the model of the measurement process can increase the epistemic value of the measurement outcome. Such transformations are attributed to the creativity of the experimental collaboration. Creativity, in this context, is both a product, a creative and improved model, and the distributed collaborative process of transformation to the model of the measurement process. For the case of the planned measurements at the HL-LHC, where models of the measurement process perform the epistemic function of prediction, creativity is included in the models of the measurement process, both as projected quantified creativity and as an assumed property of the future collaborations.


2019 ◽  
Vol 43 (30) ◽  
pp. 11959-11967 ◽  
Author(s):  
Nadeem Hussain ◽  
Fangfang Wu ◽  
Waqar Younas ◽  
Liqiang Xu

A stable hollow sphere NaNiF3//AC device with ultra-high energy and power density.


Sign in / Sign up

Export Citation Format

Share Document