Science & Technique
Latest Publications


TOTAL DOCUMENTS

387
(FIVE YEARS 192)

H-INDEX

4
(FIVE YEARS 2)

Published By Belarusian National Technical University

2414-0392, 2227-1031

2021 ◽  
Vol 20 (6) ◽  
pp. 493-498
Author(s):  
Ya. N. Kovalev ◽  
V. N. Yaglov ◽  
T. A. Chistova ◽  
V. V. Girinsky

Abstract. Currently the Republic of Belarus is solving the problem of processing a by-product – phosphogypsum, formed in the process of phosphorric acid production. The issue of utilization of phosphogypsum is becoming more and more relevant, and there are several reasons for this: transportation of phosphogypsum to dumps and its storage require large capital investments and operating costs; when creating phosphogypsum dumps, it is necessary to alienate large areas, sometimes even cultivated land; storage of this material in dumps, even with the neutralization of soluble impurities and with the observance of dump operational rules causes irreparable harm to the environment. There are known studies of scientists on the use of phosphogypsum for road construction as a binder for strengthening soils, foundations and repair work. The paper presents the results of experiments on obtaining road-building materials from this waste without converting it into a binder. Based on the research, a technology for the preparation of asphalt concrete mixtures with the use of mineral powder in the form of phosphogypsum dihydrate has been developed.


2021 ◽  
Vol 20 (6) ◽  
pp. 522-527
Author(s):  
D. N. Leontiev ◽  
A. V. Ihnatenko ◽  
O. V. Synkovska ◽  
L. A. Ryzhikh ◽  
N. V. Smirnova ◽  
...  

A method is proposed for determining the fuel consumption of a wheeled vehicle depending on its speed, road surface flatness and road slope in the longitudinal direction. The purpose of the research is to derive mathematical relationships for calculating the fuel consumption of vehicles, which is one of the transport cost factors during the construction/reconstruction or overhaul of a highway. The proposed polynomial dependencies for calculating fuel in addition to vehicle speed, road surface flatness and its longitudinal slope take into account the mass-dimensional parameters of vehicles involved in road traffic. New mathematical relationships between the speed of wheeled vehicles, road surface flatness and longitudinal road slope allow to simulate the change in the value of fuel consumption of a wheeled vehicle when the speed of traffic flow or the slope of the road surface changes in the forward or reverse direction of the vehicle. In a graphic way, the influence of the pavement slope on the value of fuel consumption, both loaded and unloaded wheeled vehicle is presented. When determining transport costs associated with the highway construction, reconstruction or overhaul it is proposed to use empirical mathematical relationships, which make it possible to obtain fuel consumption with an accuracy of 5 % and save up to 15 % of budget (private) investments. The analysis of scientific publications of the existing approach determine the transport costs associated with highway construction, reconstruction or overhaul. The presented method for determining the fuel consumption of wheeled vehicles with small and large loading capacity increases the accuracy of determining transportation costs and reduces the level of financial costs for highway construction, reconstruction or overhaul.


2021 ◽  
Vol 20 (6) ◽  
pp. 487-492
Author(s):  
M. A. Radjabova ◽  
B. I. Eshmatova ◽  
N. K. Babanazarova

The problem of determining the spectral characteristic of a controlled sample under conditions of limited a priori information using regularization methods is considered in the paper. A change in the state of the surface of optical elements significantly increases the light scattering, so it is necessary regularly to take into account the amount of scattered light in the light flux reflected from the surface and the measured and comparative samples. The conversion of the light flux into the electrical signal of the photodetector can also occur non-linearly. This requires the development of such measurement method that considers both the scattered light and various non-linearities of the measuring circuit. It is known that the mathematical model of measurement is described by the Fredholm integral equation of the first kind, its solution under the accepted assumptions is recommended to be sought in the form of a matrix equation using a recurring procedure. With regard to the fact that the estimation of the initial data errors in the equation is associated with certain difficulties, in the case under consideration, it is advisable to determine the regularization parameter based on the method of quasi-optimality. A characteristic disadvantage of the known analytical and experimental methods for determining the hardware function of a spectral device is that they do not take into account its change during operation. Since the actual hardware function of the device usually differs from the Gaussian curve, the use of hardware functions in the form of analytical dependencies does not always give the desired result, and for experimental methods, special equipment with a quasi-monochromatic radiation source is required. An algorithm for restoring the hardware function of a spectral device based on regular methods for solving ill-posed problems is proposed. The estimation of the matrix operator of the hardware function is proposed to be obtained on the basis of explicit least squares estimation algorithms. The expediency of choosing a value of the regularization parameter that minimizes the accepted characteristic of the accuracy of the solution is indicated.


2021 ◽  
Vol 20 (6) ◽  
pp. 506-513
Author(s):  
A. V. Zedgenizov ◽  
D. V. Kapskiy ◽  
R. Yu. Lagerev

The paper discusses problems of assessing the impact of mass attraction centers on the adjacent street and road network in the process of their functioning, expansion or conversion. The choice of criteria for assessing the organization of traffic flow, given in the Russian and foreign literature, has been substantiated, in particular, it is proposed to use v/c ratio for adjacent junction and corresponding level of traffic service (LOS). The main models for estimating capacity of signalized intersections are presented. The procedures of forming a mathematical model for estimating the load factor of signalized intersections is shown. The concepts of lane group capacity, total lost time per cycle, phase coefficients, saturation flow rate, and coefficients taking into account the decrease in the ideal saturation flow rate are explained. A mathematical model for estimating transport demand is presented, which allows to calculate the intensity of traffic flow to and from the center of mass attraction on the basis of the total traffic flow of correspondence, share of visitors in individual transport, average filling of individual transport, and coefficient of daily irregularity upon arrival and departure of visitors on an individual transport. An integrated mathematical model of loaf factor is proposed which includes parameters for estimating transport demand for centers of mass embarrassment and parameters that determine the signalized intersections capacity. The uniqueness of the integrated model is that it simultaneously involves parameters reflecting the demand and capacity of loading intersection. Recommendations are made on assessing the level of traffic service flows and the v/s ratio, based on the data of transport demand and capacity, adjacent to the centers of mass attraction of the road network. The presented method of estimating the LOS based on the capacity of the signalized intersections allows us to estimate the influence degree of mass attraction centers on the adjacent urban road network.


2021 ◽  
Vol 20 (6) ◽  
pp. 476-481
Author(s):  
D. A. Stepanenko ◽  
K. A. Bunchuk

The paper describes a technique for modelling and optimization of ring-shaped compound ultrasonic waveguides consisting of two sequentially joined segments of different materials by means of finite elements method. The possibility of using such waveguides for amplifying vibrations in amplitude has been justified in the paper. The advantage of the developed technique consists in possibility of its realization by means of standard engineering software, particularly COMSOL Multiphysics. The correctness and efficiency of the technique is proved by comparing the numerical data with the simulation results by means of transfer matrix method using equations of vibration of Euler – Bernoulli and Timoshenko type. It is shown that in compound ring-shaped waveguides two kinds of vibration modes are possible – variable-sign and constant-sign, moreover only constant-sign modes are of practical interest for amplification of vibration amplitude. Recommendations for selection of optimal geometric parameters of the waveguides are given, particularly it is shown that for ensuring maximum vibration amplification factor it is necessary to choose central angles of the waveguide segments with account for calculated dependence between amplification factor and angle, characterized by presence of several local maxima of the amplification factor. It is noted that the high accuracy of the existing semi-analytical methods for calculating and designing ring-shaped waveguides is achieved using methods based on the application of Timoshenko-type equations of vibration.


2021 ◽  
Vol 20 (6) ◽  
pp. 528-538
Author(s):  
L. S. Abramova ◽  
H. H. Ptitsia ◽  
S. V. Kapinus ◽  
T. V. Kharchenko

Results of a study of an actual scientific and technical problem of determining the road safety level on road sections are presented in the paper. The aim of the study is to develop an express method for assessing road safety based on improving the method of the final accident rate by reducing the partial accident rate with the required accuracy of determining the safety level on public roads. The formalization of the relationship between the parameters of road traffic conditions has been carried out to study the level of safety on highways. Latent factors of the parameters of traffic conditions have been obtained on the basis of reduction of their aggregate by the method of principal components, taking into account the relationship of partial accident rates. This condition has allowed to develop analytical models for determining road safety for implementation in the practice of conducting a road safety audit. A method for identifying hazardous areas on highways has been proposed in the paper. It includes 11 parameters of road conditions out of 18 partial accident rates proposed in the prototype and regulatory documents of Ukraine. The adequacy of the model is determined by deviation values of the obtained data according to the prototype model from the values of the relative accident rate, which were 3.22 and 18.61, respectively. The proposed model reduces the deviation value by six times and affects the accuracy of determining the safety level. Experimental studies have been conducted on 79 km of highways (on 385 sectors with constant values of traffic conditions parameters). The results of a comparative analysis of the safety level for the prototype model and the developed model have been identical and shown a decrease in time and labor costs by 1.6 times without loss of accuracy. Thus, the developed methodology is recommended to be applied for determining the potential danger of road sections during an express analysis of the road safety or when conducting a safety audit at various stages of the road life cycle.


2021 ◽  
Vol 20 (6) ◽  
pp. 514-521
Author(s):  
V. K. Dolia ◽  
K. V. Dolia ◽  
O. E. Dolia

The efficiency of the functioning of urban passenger transport routes has been studied in the paper. It has been established that the functioning of urban passenger transport routes takes place in a non-isolated environment, which affects the system from the moment of its formation and can lead to discrepancy between the calculated and actual efficiency of the system. As a result of the fucntioning indicator analysis of the passenger transportation route, it has been revealed that the environment of the route functioning affects the efficiency in a complex manner. Consequently, the mutual influence of one factor on others should be taken into account. Performance evaluation should be carried out for the entire route system, and not within the separately considered subsystem. As a result of the analysis of such key indicators as income, fuel costs, lubricants, maintenance and repair, discrepancies have been found between the planned values of indicators and actual data. It is determined that the distribution function of the random variables of these indicators is described by a normal law. At the final stage of the study, regularities in the influence of the road transport enterprise parameters on the probability of investment return have been obtained. The proposed integrated approach to determining the efficiency of urban passenger transport routes is based not only on the established, but also on the stochastic parameters that occur during the functioning of these routes. An algorithm has been developed for determining the efficiency of urban route passenger traffic, which takes into account the interrelation of income and expenses, modern ideas about the patterns of change in the prpbability of development of optimistic, pessimistic and intermediate scenarios for improvement of route efficiency events. The algorithm is based on formalized dependences of the change in time of the probabilities of income and expenses which are taken into account in the operation process of urban passenger transport routes with their various parameters.


2021 ◽  
Vol 20 (6) ◽  
pp. 482-486
Author(s):  
V. A. Ivanov ◽  
V. V. Krasovskii ◽  
V. F. Gremenok ◽  
L. I. Postnova

Alloys of lead and tin telluride (PbxSn1–xTe) are materials with good thermoelectric properties, as well as semiconductors that can be used as long-wave infrared detectors. Polycrystalline telluride of PbxSn1–xTe (0.05 £ x £ 0.80) alloys has been synthesized by direct fusion technique. Thin films of these materials have been obtained by the hot wall method depositing Сorning 7059 on glass substrates at Tsub = (200–350) oC and vacuum of about 10–5 Torr. The microstructure of the films has been investigated by XRD, SEM and EDX methods. The X-ray spectra of thin films have been in satisfactorily agreement with the spectra of the powder target and indicated the absence of binary phases. The films have shown a natural cubic crystalline structure. While increasing the lead content, the unit cell parameter of the crystal also increases. The established linear relationship between the unit cell parameter and the elemental composition corresponds to Vegard's law. The SEM analysis has shown that the films are polycrystalline, have a columnar structure, are tightly packed and have good mechanical adhesion. The grain size depends on the chemical composition and temperature of the substrate. The electrical measurements have shown that the grown films are non-degenerate semiconductors of p-type conductivity. The conductivity of the films was in the range of σ = (3 × 101)–(1 × 104) Ω–1×cm–1. An increase of lead concentration leads to a decrease in electrical conductivity. Hall mobility in the grown thin films increases in the range of changes in the lead content from ~10 to ~23 at. %, and decreases with a further increase to ~33 at. %. At the same time, the strongest dependence of the decrease in mobility on an increase in temperature increase is observed for films with a high lead content and is explained by the predominant scattering of charge carriers by vibrations of the crystal lattice. For a sample with an average lead concentration, an alternative effect of two scattering mechanisms is observed in the temperature dependence of the mobility: by impurity ions and by phonons.


2021 ◽  
Vol 20 (6) ◽  
pp. 499-505
Author(s):  
D. F. Goncharenko ◽  
A. I. Aleinikova ◽  
S. V. Yesakova ◽  
R. I. Hudilin

The aim of the work is to develop a technology for the restoration of damaged sections of sewer collectors using clinker bricks. A significant part of such collectors in the Ukraine has completely exhausted their depreciation resource. For their construction, concrete and reinforced concrete were used, which are subject to destruction as a result of the influence of many factors and, above all, microbiological corrosion. Therefore, the selection of the optimal repair technology using corrosion-resistant clinker brick is relevant. The paper considers the problems of repair and reconstruction of worn-out collectors. Technical and technological solutions of an open method for their recovery using pneumatic formwork and corrosionresistant clinker brick are presented. The design of the collector lining structure has been carried out using the finite element method. To justify the feasibility of using the proposed technology, two options for restoring a worn-out collector have been considered: the “pipe-in-pipe” method and method developed by the authors using clinker bricks. The second option in terms of the cost of materials is almost four times more economical and more expedient than the first one (where polymer materials are used). The advantage of restoring circular sewer collectors by means of laying clinker bricks lies in the durability and resistance of this material (taking into account the anticorrosive composition of concrete) to the aggressive effects of the sewer environment. It should be noted that the application of the developed restoration technology is the most appropriate in conditions of sparse building or outside the city due to the significant volume of earthworks.


2021 ◽  
Vol 20 (6) ◽  
pp. 459-464
Author(s):  
F. I. Panteleenko ◽  
M. N. Karpets ◽  
M. A. Belotserkovsky ◽  
A. V. Sosnovsky

. It is known that at present, methods of thermal spraying are widely used to restore and strengthen various worn-out machine parts. As a rule, metal coatings applied by thermal spraying have lower strength characteristics than solid materials. It is believed that the strength of coatings is proportional to their adhesive and cohesive strength. The value of adhesive and cohesive strength depends on various factors, including the nature of the materials and the technology of coating. An important factor characterizing the possibility of using metal coatings in various industries is the strength of adhesion of coatings to the base metal. The paper presents the determination of the adhesive and cohesive strength of coatings from different materials, applied by the method of hypersonic metallization. The results of testing the strength of metal coatings made of ER316LSi-grade wire, nichrome (Cr20Ni80) and molybdenum wire are given in the paper. Based on the results of metallographic studies, the proportion of the participation of cohesive and adhesive components in the strength of coatings has been determined, and some features of coating destruction have been described. It has been found that the participation of the cohesive and adhesive components of the coating strength differs depending on the material used. The cohesive component prevails in the strength of coatings made of high-alloy wire of the ER316LSi-grade, at which destruction mainly occurs along the coating-base boundary. For nichrome coatings and especially for coatings made of molybdenum, the cohesive component is predominant, in which the destruction of the coating occurs not along the coating-base boundary, but between the coating layers.


Sign in / Sign up

Export Citation Format

Share Document