scholarly journals Phase Change Material dari Campuran Parafin untuk Tekstil Swa-Termoregulasi

Texere ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 162-176
Author(s):  
Tisna Kusumah ◽  
Tatang Wahyudi ◽  
Mohamad Widodo

Phase change material (PCM) organik seperti lilin parafin memiliki kemampuan untuk menyerap sejumlah energi panas atau entalpi (kJ/kg) pada saat lilin parafin mengalami perubahan fasa dari padat ke cair, dan sebaliknya, melepaskan energi panas saat berubah fasa dari cair ke padat. Kemampuan unik lilin parafin ini telah diteliti oleh banyak peneliti seperti mengenai sifat-sifat termal dan pemanfaatannya sebagai thermal energy storage. Penelitian-penelitian tentang PCM organik yang telah banyak dikerjakan, umumnya menggunakan bahan kelas sintesa yang memiliki keunggulan dalam hal kemurnian tetapi memiliki kesulitan untuk diaplikasikan dalam skala industri karena faktor keekonomisan dan ketersediaan bahan yang sulit didapat dalam skala besar. Oleh karena itu, penelitian ini difokuskan untuk mengetahui perubahan sifat termal dari campuran lilin parafin padat dan cair kelas mutu industri sebagai bahan utama PCM yang dapat dimanfaatkan dalam industri tekstil untuk membuat material tekstil yang responsif dan adaptif terhadap perubahan suhu lingkungan. Hasil analisa DSC (differential scanning calorimetry) menunjukkan bahwa pencampuran lilin parafin padat:cair dengan komposisi 9:1, 8:2, 7:3, dan 6:4 memperlihatkan adanya pembentukan entitas senyawa baru dengan sifat termal yang berbeda. Masing-masing kombinasi campuran yang berbeda memiliki titik leleh dan kandungan entalpi yang semakin menurun dari 60,4 ºC (9:1) ke 51,4 (6:4) seiring dengan menurunnya komposisi lilin parafin padat dan bertambahnya komposisi lilin parafin cair.

Author(s):  
Tonny Tabassum Mainul Hasan ◽  
Latifa Begum

This study reports on the unsteady two-dimensional numerical investigations of melting of a paraffin wax (phase change material, PCM) which melts over a temperature range of 8.7oC. The PCM is placed inside a circular concentric horizontal-finned annulus for the storage of thermal energy. The inner tube is fitted with three radially diverging longitudinal fins strategically placed near the bottom part of the annulus to accelerate the melting process there. The developed CFD code used in Tabassum et al., 2018 is extended to incorporate the presence of fins. The numerical results show that the average Nusselt number over the inner tube surface, the total melt fraction, the total stored energy all increased at every time instant in the finned annulus compared to the annulus without fins. This is due to the fact that in the finned annulus, the fins at the lower part of the annulus promotes buoyancy-driven convection as opposed to the slow conduction melting that prevails at the bottom part of the plain annulus. Fins with two different heights have been considered. It is found that by extending the height of the fin to 50% of the annular gap about 33.05% more energy could be stored compared to the bare annulus at the melting time of 82.37 min for the identical operating conditions. The effects of fins with different heights on the temperature and streamfunction distributions are found to be different. The present study can provide some useful guidelines for achieving a better thermal energy storage system.


Sign in / Sign up

Export Citation Format

Share Document