Treatment Responses in Patients with Chronic Myeloid Leukemia on Tyrosine Kinase Inhibitors (TKI) Therapy

2021 ◽  
Vol 15 (9) ◽  
pp. 2358-2360
Author(s):  
Ahmed Ali Mir ◽  
Abdur Rehman Mir ◽  
Uswah Rehmat ◽  
Ifra Shakoor ◽  
Farhan Amjad ◽  
...  

Background: Chronic myeloid leukemia (CML) is a cancer of white blood cells results by the BCR-ABL translocation. Part of BCR gene from chromosome 22 is fused with ABL gene on chromosome 9. Aim: To observe percentage of patients achieving Cytogenetics response (CR), and Deep molecular response (DMR) in CML patients taking TKI (Imatinib and Nilotinib). Study Design: Retrospective Cohort study. Methodology: This study was conducted in 2018-2019 in about 198 CML patients to evaluate TKI therapy response and observation was based upon their Quantitative PCR test which gave percentage of BCR-ABL gene translocation in IU. Patients which were diagnosed with CML in 2016 and was regular in their treatment for about 2 years were included in the study. No intervention was given as in vivo study. Statistical analysis: Data analyzed by SPSS 25.0v. Results: Results showed that out of 198 CML patients, started on 1st line TKI (imatinib) 95 males (48%) and 103 females (52%) showed cytogenetic response at start of therapy and after 2 years of therapy 157 (79.3%) patient showed DMR. Conclusion: This study concluded that regular 2-year treatment of chronic CML patients with TKIs produced significant response in patients. Keywords: BCR-ABL Translocation, Cytogenetic Response, Major Molecular Response, Complete Molecular Response and Deep Molecular Response.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4282-4282
Author(s):  
Fabio P S Santos ◽  
Jorge Cortes ◽  
Charles Koller ◽  
Elias Jabbour

Abstract Abstract 4282 Mutations of BCR-ABL1 have been observed in 50% of patients with chronic myeloid leukemia (CML) who develop resistance to imatinib. The gate-keeper mutation T315I is one of the mutations with universal resistance to imatinib and to the second-generation tyrosine kinase inhibitors (TKI) that are approved for the treatment of patients with imatinib failure. The use of new kinase inhibitors with in vitro activity against T315I mutation as well as other agents with different mechanisms of actions is being evaluated in clinical trials. We report the case of a 57-year old man that was diagnosed with CML in 2003. Patient received initial therapy with standard-dose imatinib that was subsequently increased to 800 mg daily. He did achieve a complete cytogenetic response (CCyR) 9 months post dose escalation. He was followed by RT-PCR for BCR-ABL1.. In May, 2007, the patient BCR-ABL1/ABL1 ratio increased to 16.38 but the patient remained in CCyR. BCR-ABL1 sequencing revealed the T315I mutation in 100% of cells (Figure 1). One month later the patient lost CCyR (5% Philadelphia-positive [Ph+] cells) and the BCR-ABL1/ABL1 ratio was 5.08. The patient was started on the T315I specific inhibitor KW-2449 (100 mg orally twice daily for 14 days, every 3 weeks). Patient had a progressive decline in percentage of cells with the T315I mutation (Figure 1). However, at the same time he had an increase in percentage of Ph+ cells. In September, 2007, three months after starting therapy with KW-2449, patient had no cytogenetic response (80% Ph+ cells, PCR for BCR-ABL1 ratio > 100) and the T315I mutation was undetectable. At that time, a new ABL1 sequencing revealed the F359I mutation (no quantification was done). Patient was maintained on KW-2449 for the next 6 months, without significant improvement in cytogenetic response nor BCR-ABL1 ratio, but the clone with the T315I mutation did not reappear. In February, 2008, the patient lost hematologic response and presented with an elevated white blood cell count of 22×109/L. The F359I mutation was still present. Therapy with KW-2449 was stopped and the patient started dasatinib 100 mg/day and Interferon-a 3,000,000 units. Three months later, the patient acheived CCyR with a BCR-ABL1/ABL1 ratio of 0.05. At the last evaluation, 16 months after the start of dasatinib and interferon combination, the patient was maintaining CCyR and major molecular response. In conclusion, this case illustrates the benefit of the use of combination therapy, mainly TKI and agent with different mechanism of action either sequentially (TKI followed by KW-2449) or concomitantly (TKI + interferon) in eradicating resistant disease with T315I clone. Figure 1 Serial Monitoring of Ph+ Cells, T315I Cells and BCR-ABL1/ABL1 Ratio Figure 1. Serial Monitoring of Ph+ Cells, T315I Cells and BCR-ABL1/ABL1 Ratio Disclosures: Cortes: Novartis: Research Funding. Jabbour:Novartis: Speakers Bureau; Bristol Myers Squibb : Speakers Bureau.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2747-2747
Author(s):  
Marketa Zackova ◽  
Tereza Lopotova ◽  
Zuzana Ondrackova ◽  
Hana Klamova ◽  
Jana Moravcova

Abstract Abstract 2747 Backround: Tyrosine kinase inhibitors (TKI) are very effective in chronic myeloid leukemia (CML) suppression, however, the problem with development of resistance in some patients exists. It is necessary to find optimal methods for therapy response prediction and for detection of resistance. Many studies on the resistance to imatinib therapy were performed on cell lines or model systems. However, these systems are not fully consistent with CML situation in vivo. Sensitivity to imatinib and its predictivity to molecular response in patients with de novo CML were tested in vitro on patients′ leukocytes by White et al. [Blood 2005; 106: 2520]. They found that IC50 values could be predictive mainly in patients with low Sokal score. Aims: To optimize in vitro method for evaluation of patients′ sensitivity to various TKIs and to test its predictivity for molecular response in therapy and/or after therapy change. Methods: The sensitivity to TKIs: imatinib, nilotinib and dasatinib were studied on leukocytes isolated from CML patients at diagnosis and various responses to treatment. Cell lines were used as controls. Isolated leukocytes/cell lines were cultivated with/without TKIs. Optimization of cultivation was performed on cell lines (ML-2, K562, CML-T2, JURL-MK1) and on leukocytes from CML newly diagnosed patients (15) and healthy donors (6). Various incubation times (4, 24, 48 and 72h) were tested. Concentrations of TKI were used in values near to physiological levels: 2 –3 concentrations for each inhibitor (1uM, 10uM imatinib, 0,5uM and 2uM nilotinib and 1nM, 10nM and 100nM dasatinib). In given time-points the cells were harvested and lysed for protein and mRNA analyses. Sensitivity to TKIs was tested by BCR-ABL kinase inhibition – via Crkl phosphorylation (western blots) and also by WT1 transcript level kinetics [Cilloni et al, Cancer 2004; 101: 979]. Quality of cultivation was tested by apoptosis level (RNA degradation, Annexin staining – Agilent Bioanalyzer 2100). Results: We found 48 h to be the optimal time for in vitro cultivation. This time was long enough to see TKIs dependent changes on protein as well as mRNA level. At this time the intensity of apoptosis was relatively low and did not influence results. The predictive ability of cultivation with TKIs was tested on patients at diagnosis (15), with optimal (5) and suboptimal response (5) and patient with therapy failure (13). The disease state of all patients was further monitored in range from 6 to 21 months (median 12 months) after cultivation. Mostly all of newly diagnosed patients were in vitro sensitive to all three TKIs, 10 of them achieved MMR (median 7 months, range 5 – 16) on imatinib. In patients with resistance to imanitib therapy the good sensitivity to one of 2nd generation TKI on in vitro tests represented the good response to this inhibitor, 4 patients from 10 on dasatinib achieved MMR (within 4 months), the other responded to therapy with continual decrease of BCR-ABL transcript level. Thus, the cultivation test can help with the therapy switch. However, the prognosis of patients with additive chromosomal aberration was poor even if they were sensitive to TKIs in vitro. Only one of 3 patients with 8 trisomy sensitive to dasatinib in vitro achieved MMR at 4th month after starting of dasatinib. Two patients with T315I were not sensitive to any of TKIs in vitro and in vivo, as it was expected. We continue to follow up of all patients. In conclusion, the results from in vitro cultivations of patients′ leukocytes with TKIs can help with the choice of efficient inhibitor for individual patient′s therapy, however, it is necessary to take into consideration the results of cytogenetic analyses of patients and other factors influencing CML. Supported by MZOUHKT2005. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (11) ◽  
Author(s):  
Yu-Cheng Chang ◽  
Yi-Hao Chiang ◽  
Kate Hsu ◽  
Chih-Kuang Chuang ◽  
Chen-Wei Kao ◽  
...  

AbstractTyrosine kinase inhibitors (TKIs) that target BCR-ABL are the frontline treatments in chronic myeloid leukemia (CML). Growing evidence has shown that TKIs also enhance immunity. Since gamma-delta T (γδT) cells possess the potent anticancer capability, here we investigated the potential involvement of γδT cells in TKI treatments for CML. We characterized γδT cells isolated from chronic-phase CML patients before and during TKI treatments. γδT expression increased significantly in CML patients who achieved major molecular response (MMR) and deep molecular response (DMR). Their Vδ2 subset of γδT also expanded, and increased expression of activating molecules, namely IFN-γ, perforin, and CD107a, as well as γδT cytotoxicity. Mechanistically, TKIs augmented the efflux of isopentenyl pyrophosphate (IPP) from CML cells, which stimulated IFN-γ production and γδT expansion. Notably, the size of the IFN-γ+ naïve γδT population in TKI-treated CML patients was strongly correlated with their rates to reach DMR and with the duration on DMR. Statistical analysis suggests that a cutoff of 7.5% IFN-γ+ naïve subpopulation of γδT in CML patients could serve as a determinant for MR4.0 sustainability. Our results highlight γδT cells as a positive regulator for TKI responses in CML patients.


2021 ◽  
Author(s):  
Yuji Okamoto ◽  
Mitsuhito Hirano ◽  
Kai Morino ◽  
Masashi K. Kajita ◽  
Shinji Nakaoka ◽  
...  

AbstractChronic myeloid leukemia (CML) is a myeloproliferative disorder caused by the BCR-ABL1 tyrosine kinase1,2. ABL1-selective tyrosine kinase inhibitors (TKIs) including nilotinib have dramatically improved the prognosis of patients with CML3–7. The ultimate goal of CML treatment is likely to be TKI-free maintenance of deep molecular response (DMR), which is defined by quantitative measurement of BCR-ABL1 transcripts on the international scale (IS)8, and durable DMR is a prerequisite to reach this goal9. Thus, an algorithm to enable the early prediction of DMR achievement on TKI therapy is quite valuable. Here, we show that our mathematical framework based on a clinical trial dataset10 can accurately predict the response to frontline nilotinib. We found that our simple dynamical model can predict nilotinib response by using two common laboratory findings (observation values): IS11,12 and white blood cell (WBC) count. Furthermore, our proposed method identified patients who failed to achieve DMR with high fidelity according to the data collected only at three initial time points during nilotinib therapy. Since our model relies on the general properties of TKI response, our framework would be applicable to CML patients who receive frontline nilotinib or other TKIs in clinical practice.Significance StatementChronic myeloid leukemia (CML) is a myeloproliferative disorder caused by the BCR-ABL1 tyrosine kinase. The goal of this treatment is the sequential achievement of deep molecular response (DMR). Tyrosine kinase inhibitors (TKIs) are effective in the reduction because they inhibit CML cell proliferation. However, because of individual differences in the TKI efficacy, some patients are unable to achieve DMR, so that early prediction of DMR reachability is necessary for personalized medicine. By combining time series analysis and mathematical modeling, we developed a mathematical method that accurately predicts patients who do not achieve DMR in the early stages of TKI administration. Our prediction method gives a basis of effective personalized treatments for CML patients.


Blood ◽  
2009 ◽  
Vol 114 (11) ◽  
pp. 2232-2235 ◽  
Author(s):  
Dushyant Verma ◽  
Hagop M. Kantarjian ◽  
Dan Jones ◽  
Rajyalakshmi Luthra ◽  
Gautam Borthakur ◽  
...  

Abstract The most common BCR-ABL transcripts in chronic myeloid leukemia (CML) are e13a2(b2a2) and e14a2(b3a2). Other transcripts such as e1a2 are rare and their outcome with tyrosine kinase inhibitors (TKI) therapy is undefined. We analyzed 1292 CML patients and identified 14 with only e1a2 transcripts, 9 in chronic phase (CP), 1 in accelerated phase (AP), and 4 in blast phase (BP). Of the CP, 4 achieved complete hematologic response (CHR); 2, complete cytogenetic response (CCyR); 2, partial cytogenetic response (PCyR), and 1 did not respond to imatinib. Five patients progressed to myeloid BP (3), lymphoid BP (1), or AP (1). The AP patient received various TKIs sequentially and achieved only CHR. BP patients received hyper-CVAD (hyperfractionated cyclophosphamide, vincristine, adriamycin, dexamethasone) plus imatinib/dasatinib or idarubicin plus cytarabine (Ara-C); 2 did not respond, 1 had CCyR, and 1 short-lasting complete molecular response (CMR). Overall, cytogenetic responses lasted 3 to 18 months; only 2 achieved major molecular response (MMR) on TKI. P190BCR-ABL CML is rare and is associated with an inferior outcome to therapy with TKI. These patients need to be identified as high-risk patients.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4442-4442
Author(s):  
Silvia Marce ◽  
Lurdes Zamora ◽  
Marta Cabezon ◽  
Blanca Xicoy ◽  
Concha Boqué ◽  
...  

Abstract Abstract 4442 Introduction: Chronic myeloid leukemia (CML) is a model of disease in the development of targeted therapies. Tyrosine kinase inhibitors (TKIs) have transformed the approach to management of CML and have dramatically improved patients' outcome. Clinical response is obtained in the majority of patients. However, a significant proportion of patients do not achieve the optimal desirable outcome or are completely resistant to this treatment. ABL kinase domain mutations have been extensively implicated in the pathogenesis of TKI resistance. Treatment with second-generation TKIs has produced high rates of hematologic and cytogenetic response in mutated ABL patients. The aim of this study was analyzed the presence of ABL mutations in imatinib resistant patients and determine the importance of changing to second-generation TKIs treatment as soon as failure or suboptimal response is recognized. Patients and methods: From 420 CML patients diagnosed in 6 centers between 2004 and 2010, we have amplified and sequenced the ABL1 domain from BCR-ABL1 amplicon of 45 imatinib resistant patients (23 patients with suboptimal response, 14 with treatment failure, 4 who lost the molecular response and 4 patients who progressed to blast phase). The obtained sequences were compared with the published ABL1 sequence, GenBank U07563, using BLAST 2 software. Results: We have detected mutations in 15 of 45 patients (33%), some of them with more than one mutation (Table 1). Seven of these patients were treated with second-generation TKIs as a single treatment. Three of them achieve a major molecular response (MMR), one patient is in complete cytogenetic response (CCyR) and the other two patients are in major (MCyR) and partial (PCyR) cytogenetic response. Another patient received nilotinib followed by hematological stem cell transplantation (HSCT) and is in MMR. Two patients were submitted to a HSCT and achieve MMR. Only one patient treated with nilotinib as second option has not reach a cytogenetic response one year after detection of the mutation. Two of the patients with the T315I mutation were treated with IFN and nilotinib achieving PCyR and MCyR, respectively, and are still alive. The other T315I patient, and two patients in blast-crisis (BC) disease with the F317L mutation who received dasatinib prior to the study of ABL mutations, died before a change of treatment could have been performed. Conclusions: Disclosures: No relevant conflicts of interest to declare.


Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 184-188 ◽  
Author(s):  
Kendra Sweet ◽  
Vivian Oehler

Abstract Mrs G is a 54-year-old woman with a diagnosis of chronic-phase chronic myeloid leukemia dating back 8 years. She had a low-risk Sokal score at diagnosis and was started on imatinib mesylate at 400 mg orally daily within one month of her diagnosis. Her 3-month evaluation revealed a molecular response measured by quantitative RT-PCR of 1.2% by the International Scale. Within 6 months of therapy, she achieved a complete cytogenetic response, and by 18 months, her BCR-ABL1 transcript levels were undetectable using a quantitative RT-PCR assay with a sensitivity of ≥ 4.5 logs. She has maintained this deep level of response for the past 6.5 years. Despite her excellent response to therapy, she continues to complain of fatigue, intermittent nausea, and weight gain. She is asking to discontinue imatinib mesylate and is not interested in second-line therapy. Is this a safe and reasonable option for this patient?


Sign in / Sign up

Export Citation Format

Share Document