scholarly journals Effects of Light-Quality Control on the Plant Growth in a Plant Factory System of Artificial Light Type

2021 ◽  
Vol 40 (4) ◽  
pp. 270-278
Author(s):  
Jeong-Wook Heo ◽  
Jeong-Hyun Baek
2003 ◽  
Vol 81 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Humberto Fabio Causin ◽  
Renata D Wulff

Morphological shade-avoidance responses have been hypothesized to be a form of adaptive plasticity to improve competition for light; however, little is known about their intraspecific variability and their effect on reproductive fitness. To compare plant responses either at a common age or at a common phenological stage, two experiments were conducted with early- and late-flowering Chenopodium album plants exposed to different red (660 nm) to far red (730 nm) ratios. In the first experiment, plant height and number of leaves were recorded at several times during the vegetative stage, and at the onset of flowering, each plant was harvested and other growth traits were measured. In the second experiment, three destructive harvests were performed across the whole plant cycle. Plant growth and development markedly differed between early- and late-flowering plants in all of the conditions tested. Light treatments significantly affected stem length, total leaf number, total leaf area, and relative allocation to leaf biomass. In all families, the response of stem elongation to light treatments decreased later in the development, while changes in the other plastic responses were mostly due to variations in plant growth. No significant treatment effect was found on relative biomass allocation to reproductive structures. However, individual seed mass significantly differed between certain groups, indicating that light quality can affect reproductive fitness through changes in traits other than fruit or seed set.Key words: Chenopodium album, fitness, intraspecific variability, phenotypic plasticity, red to far red ratio, shade-avoidance responses.


2017 ◽  
Vol 69 (1) ◽  
pp. 93-101
Author(s):  
Zexiong Chen ◽  
Juan Lou

Light is the source of energy for plants. Light wavelengths, densities and irradiation periods act as signals directing morphological and physiological characteristics during plant growth and development. To evaluate the effects of light wavelengths on tomato growth and development, Solanum lycopersicum (cv. micro-Tom) seedlings were exposed to different light-quality environments, including white light and red light supplemented with blue light (at ratios of 3:1 and 8;1, respectively). Tomatoes grown under red light supplemented with blue light displayed significantly shorter stem length, a higher number of flower buds and rate of fruit set, but an extremely late flowering compared to white-light-grown plants. To illustrate the mechanism underlying the inhibition of stem growth and floral transition mediated by red/blue light, 10 trehalose-6-phosphate synthase (TPS) genes were identified in tomato, and bioinformatics analysis was performed. qRT-PCR analysis showed that SlTPSs were expressed widely throughout plant development and SlTPS1 was expressed at extremely high levels in stems and buds. Further analysis of several flowering-associated genes and microRNAs showed that the expressions of SlTPS1, SlFT and miR172 were significantly downregulated in tomato grown under red and blue light compared with those grown under white light, whereas miR156 transcript levels were increased. A regulatory model underlying vegetative growth and floral transition regulated by light qualities is presented. Our data provide evidence that light quality strongly affects plant growth and phase transition, most likely via the TPS1-T6P signaling pathway.


2013 ◽  
Vol 25 (3) ◽  
pp. 142-145
Author(s):  
Hiroshi HAMAMOTO ◽  
Keisuke YAMAZAKI

1965 ◽  
Vol 57 (3) ◽  
pp. 314-315 ◽  
Author(s):  
C. A. Federer ◽  
C. B. Tanner

Sign in / Sign up

Export Citation Format

Share Document