scholarly journals Light Quality of Artificial Light Sources for Agriculture

2013 ◽  
Vol 25 (3) ◽  
pp. 142-145
Author(s):  
Hiroshi HAMAMOTO ◽  
Keisuke YAMAZAKI
2002 ◽  
Vol 71 (4) ◽  
pp. 509-516 ◽  
Author(s):  
Naoya Fukuda ◽  
Mitsuko Kobayashi ◽  
Masami Ubukawa ◽  
Kenji Takayanagi ◽  
Sadanori Sase

2021 ◽  
Author(s):  
D. Sekulovski ◽  
M. Perz ◽  
A. Stephan

We propose a measure of temporal light quality that could be used to design flicker-free light sources, as perceived by birds. It can be applied to, among others, the poultry industry to reduce the negative impact of the modulated light on chicken health and well-being. The model is built by modifying an existing human flicker visibility model considering properties of bird vision. We discuss the implications of the model responses on the temporal quality of relevant historical light sources.


2020 ◽  
pp. 89-96
Author(s):  
Sergei S. Kapitonov ◽  
Alexei S. Vinokurov ◽  
Sergei V. Prytkov ◽  
Sergei Yu. Grigorovich ◽  
Anastasia V. Kapitonova ◽  
...  

The article describes the results of comprehensive study aiming at increase of quality of LED luminaires and definition of the nature of changes in their correlated colour temperature (CCT) in the course of operation. Dependences of CCT of LED luminaires with remote and close location of phosphor for 10 thousand hours of operation in different electric modes were obtained; the results of comparison between the initial and final radiation spectra of the luminaires are presented; using mathematical statistics methods, variation of luminaire CCT over the service period claimed by the manufacturer is forecast; the least favourable electric operation modes with the highest CCT variation observed are defined. The obtained results have confirmed availability of the problem of variation of CCT of LED luminaires during their operation. Possible way of its resolution is application of more qualitative and therefore expensive LEDs with close proximity of phosphor or LEDs with remote phosphor. The article may be interesting both for manufacturers and consumers of LED light sources and lighting devices using them.


Heritage ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 188-197
Author(s):  
Dorukalp Durmus

Light causes damage when it is absorbed by sensitive artwork, such as oil paintings. However, light is needed to initiate vision and display artwork. The dilemma between visibility and damage, coupled with the inverse relationship between color quality and energy efficiency, poses a challenge for curators, conservators, and lighting designers in identifying optimal light sources. Multi-primary LEDs can provide great flexibility in terms of color quality, damage reduction, and energy efficiency for artwork illumination. However, there are no established metrics that quantify the output variability or highlight the trade-offs between different metrics. Here, various metrics related to museum lighting (damage, the color quality of paintings, illuminance, luminous efficacy of radiation) are analyzed using a voxelated 3-D volume. The continuous data in each dimension of the 3-D volume are converted to discrete data by identifying a significant minimum value (unit voxel). Resulting discretized 3-D volumes display the trade-offs between selected measures. It is possible to quantify the volume of the graph by summing unique voxels, which enables comparison of the performance of different light sources. The proposed representation model can be used for individual pigments or paintings with numerous pigments. The proposed method can be the foundation of a damage appearance model (DAM).


2021 ◽  
Vol 2021 (29) ◽  
pp. 136-140
Author(s):  
Dorukalp Durmus

The quality of building electric lighting systems can be assessed using color rendition metrics. However, color rendition metrics are limited in quantifying tunable solid-state light sources, since tunable lighting systems can generate a vast number of different white light spectra, providing flexibility in terms of color quality and energy efficiency. Previous research suggests that color rendition is multi-dimensional in nature, and it cannot be simplified to a single number. Color shifts under a test light source in comparison to a reference illuminant, changes in color gamut, and color discrimination are important dimensions of the quality of electric light sources, which are not captured by a single-numbered metric. To address the challenges in color rendition characterization of modern solid-state light sources, the development of a multi-dimensional color rendition space is proposed. The proposed continuous measure can quantify the change in color rendition ability of tunable solid-state light devices with caveats. Future work, discretization of the continuous color rendition space, will be carried out to address the shortcomings of a continuous three-dimensional space.


Sign in / Sign up

Export Citation Format

Share Document