scholarly journals Minimum Variance Unbiased Estimation for the Maximum Entropy of the Transformed Inverse Gaussian Random Variable by Y=X-1/2

2006 ◽  
Vol 13 (3) ◽  
pp. 657-667 ◽  
Author(s):  
Byung-Jin Choi
Author(s):  
Mohammed S. Abd-alrazak Mohammed S. Abd-alrazak ◽  
S. H. A, Al-Jasim S. H. A, Al-Jasim

Maximum likelihood estimation method, uniformly minimum variance unbiased estimation method and minimum mean square error estimation, as classical estimation procedures, are frequently used for parameter estimation in statistics, which assuming the parameter is constant , while Bayes method assuming the parameter is random variable and hence the Bayes estimator is an estimator which minimize the Bayes risk for each value the random observable and for square error lose function the Bayes estimator is the posterior mean. It is well known that the Bayesian estimation is hardly used as a parameter estimation technique due to some difficulties to finding a prior distribution. The interest of this paper is that whether above classical estimators of the parameter for a particular probability distribution can be obtained from Bayes estimator is determined. In this analysis one-parameter Pareto distribution is used to examine the relationship between Bayesian and classical estimators. Considering improper prior distribution for shape parameter of the Pareto distribution of the first kind with known scale parameter which equals one, we have tried to show how the classical estimators can be obtain from Bayes estimator for various choices of hyper parameters of the prior function.    


2021 ◽  
Vol 11 (12) ◽  
pp. 5723
Author(s):  
Chundong Xu ◽  
Qinglin Li ◽  
Dongwen Ying

In this paper, we develop a modified adaptive combination strategy for the distributed estimation problem over diffusion networks. We still consider the online adaptive combiners estimation problem from the perspective of minimum variance unbiased estimation. In contrast with the classic adaptive combination strategy which exploits orthogonal projection technology, we formulate a non-constrained mean-square deviation (MSD) cost function by introducing Lagrange multipliers. Based on the Karush–Kuhn–Tucker (KKT) conditions, we derive the fixed-point iteration scheme of adaptive combiners. Illustrative simulations validate the improved transient and steady-state performance of the diffusion least-mean-square LMS algorithm incorporated with the proposed adaptive combination strategy.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Huili Xue ◽  
Kun Lin ◽  
Yin Luo ◽  
Hongjun Liu

A minimum-variance unbiased estimation method is developed to identify the time-varying wind load from measured responses. The formula derivation of recursive identification equations is obtained in state space. The new approach can simultaneously estimate the entire wind load and the unknown structural responses only with limited measurement of structural acceleration response. The fluctuating wind speed process is investigated by the autoregressive (AR) model method in time series analysis. The accuracy and feasibility of the inverse approach are numerically investigated by identifying the wind load on a twenty-story shear building structure. The influences of the number and location of accelerometers are examined and discussed. In order to study the stability of the proposed method, the effects of the errors in crucial factors such as natural frequency and damping ratio are discussed through detailed parametric analysis. It can be found from the identification results that the proposed method can identify the wind load from limited measurement of acceleration responses with good accuracy and stability, indicating that it is an effective approach for estimating wind load on building structures.


Sign in / Sign up

Export Citation Format

Share Document