scholarly journals Semiparametric Kernel Poisson Regression for Longitudinal Count Data

2008 ◽  
Vol 15 (6) ◽  
pp. 1003-1011
Author(s):  
Chang-Ha Hwang ◽  
Joo-Yong Shim
2020 ◽  
Author(s):  
James L. Peugh ◽  
Sarah J. Beal ◽  
Meghan E. McGrady ◽  
Michael D. Toland ◽  
Constance Mara

2021 ◽  
Vol 21 (1-2) ◽  
pp. 56-71
Author(s):  
Janet van Niekerk ◽  
Haakon Bakka ◽  
Håvard Rue

The methodological advancements made in the field of joint models are numerous. None the less, the case of competing risks joint models has largely been neglected, especially from a practitioner's point of view. In the relevant works on competing risks joint models, the assumptions of a Gaussian linear longitudinal series and proportional cause-specific hazard functions, amongst others, have remained unchallenged. In this article, we provide a framework based on R-INLA to apply competing risks joint models in a unifying way such that non-Gaussian longitudinal data, spatial structures, times-dependent splines and various latent association structures, to mention a few, are all embraced in our approach. Our motivation stems from the SANAD trial which exhibits non-linear longitudinal trajectories and competing risks for failure of treatment. We also present a discrete competing risks joint model for longitudinal count data as well as a spatial competing risks joint model as specific examples.


Author(s):  
J. M. Muñoz-Pichardo ◽  
R. Pino-Mejías ◽  
J. García-Heras ◽  
F. Ruiz-Muñoz ◽  
M. Luz González-Regalado

2012 ◽  
Vol 57 (1) ◽  
Author(s):  
SEYED EHSAN SAFFAR ◽  
ROBIAH ADNAN ◽  
WILLIAM GREENE

A Poisson model typically is assumed for count data. In many cases, there are many zeros in the dependent variable and because of these many zeros, the mean and the variance values of the dependent variable are not the same as before. In fact, the variance value of the dependent variable will be much more than the mean value of the dependent variable and this is called over–dispersion. Therefore, Poisson model is not suitable anymore for this kind of data because of too many zeros. Thus, it is suggested to use a hurdle Poisson regression model to overcome over–dispersion problem. Furthermore, the response variable in such cases is censored for some values. In this paper, a censored hurdle Poisson regression model is introduced on count data with many zeros. In this model, we consider a response variable and one or more than one explanatory variables. The estimation of regression parameters using the maximum likelihood method is discussed and the goodness–of–fit for the regression model is examined. We study the effects of right censoring on estimated parameters and their standard errors via an example.


2022 ◽  
Vol 10 (4) ◽  
pp. 488-498
Author(s):  
Yashmine Noor Islami ◽  
Dwi Ispriyanti ◽  
Puspita Kartikasari

Infant mortality (0-11 months) and maternal mortality (during pregnancy, childbirth, and postpartum) are significant indicators in determining the level of public health. Central Java Province which has 35 regencies/cities is included in the top five regions with the highest number of infant and maternal mortality in Indonesia. The data characteristics of the number of infants and maternal mortality are count data. Therefore, the Poisson Regression method can be used to analyze the factors that influence the number of infants and maternal mortality. In Poisson regression analysis, there must be a fulfilled assumption, called equidispersion. Frequently, the variance of count data is greater than the mean, which is known as the overdispersion. The research, binomial negative bivariate regression is used as a solutions to overcome the problem of overdispersion in poisson regression. This method produce a global model. In reality, the geographical, socio-cultural, and economic conditions of each region will be different. This illustrates the effect of spatial heterogeneity, so it needs to be developed into Geographically Weighted Negative Binomial Bivariate Regression (GWNBBR). The model of GWNBBR provides weighting based on the position or distance from one observation area to another. Significant variables for modeling infant mortality cases included the percentage of obstetric complications treated (X1), the percentage of infants who were exclusively breastfed (X3), and the percentage of poor people (X5). Significant variable for modeling maternal mortality cases is the percentage of poor people (X5). Based on the AIC value, GWNBBR model is better than binomial negatif bivariat regression model because it has a smaller AIC value. 


Sign in / Sign up

Export Citation Format

Share Document