In vitro and in vivo evaluation of an improved glass-ionomer dental cement used for the atraumatic restorative treatment (ART) technique

1996 ◽  
Author(s):  
Fu-tak Ho
2017 ◽  
Vol 25 (5) ◽  
pp. 541-550 ◽  
Author(s):  
Cristiane Duque ◽  
Kelly Limi Aida ◽  
Jesse Augusto Pereira ◽  
Gláucia Schuindt Teixeira ◽  
Angela Scarparo Caldo-Teixeira ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 61-71
Author(s):  
Katia Medina

La Técnica de Restauración Atraumática (TRA) es un procedimiento preventivo–restauradormínimamente invasivo, como alternativa de tratamiento para poblaciones vulnerables conpoco o nulo acceso a servicios de salud, que consiste en la remoción del tejido dentario cariado utilizando sólo instrumentos manuales y un material adhesivo de restauración: el ionómerode vidrio de alta viscosidad debido a sus propiedades físicas y químicas, como la adhesión ala estructura dental, la biocompatibilidad, la reacción de fraguado químico y el desarrollo yla liberación de fluoruro, que le confieren características preventivas. Objetivo: Revisar laevidencia sobre la eficacia clínica, mediante el desempeño clínico y la supervivencia de losionómeros en el tratamiento restaurador atraumático en dentición decidua. Métodos: Se realizó la búsqueda de información: estudios in vitro, ensayos clínicos aleatorizados y revisionessistemáticas con antigüedad máxima de 10 años, en las bases de datos Medline, Scielo y Scopus, con las estrategias de búsqueda (“Dental Atraumatic Restorative Treatment/therapeuticuse”[Mesh] OR “Dental Atraumatic Restorative Treatment/trends”[MesH] OR ART OR PRAT) y((“Dental Atraumatic Restorative Treatment”[Mesh]) AND (“Glass Ionomer Cements”[Mesh])OR “Ketac-Molar Quick” [Supplementary Concept]). Conclusiones: Existe evidencia científicasuficiente para determinar el éxito de las restauraciones TRA en lesiones de una superficieen dentición decidua, incluso en comparación con los materiales restauradores de los tratamientos convencionales. El desempeño clínico y la supervivencia es alta cuando se utilizan ionómeros de alta viscosidad. Aún no hay consenso acerca de las ventajas del uso de ionómerosde menor costo, encapsulados, reforzados con metal y/o con propiedades mejoradas.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Bauer ◽  
F Dehm ◽  
A Koeberle ◽  
F Pollastro ◽  
G Appendino ◽  
...  

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Sign in / Sign up

Export Citation Format

Share Document