Predicting Renewable Energy Generation Using LSTM for Risk Assessment of Local Level Power Networks

Author(s):  
Ho-Sung Ryu ◽  
Yong-Rae Lee ◽  
Mun-Kyeom Kim
Author(s):  
Bikash Ranjan Parida ◽  
Somnath Bar ◽  
Nilendu Singh ◽  
Bakimchandra Oinam ◽  
Arvind Chandra Pandey ◽  
...  

To curb the spread of novel coronavirus (COVID-19), confinement measures were undertaken, which altered the pattern of energy consumption and India’s anthropogenic CO2 emissions during the effective lockdowns periods (January to June 2020). Such changes are being analyzed using data of energy generated from coal and renewable sources and fossil-based daily CO2 emissions. Results revealed that coal-fired (fossil-based) energy generation fell by –13% in March, –29% in April, and –20% in May, and –16.6% in mid-June 2020 as compared with the same period in 2018–2019. Conversely, the renewable energy generation increased by 19% in March, 12% in April, 17% in May, and 7% in June 2020. The share of fossil-based energy fell by –6.55% in 2020 compared with mean levels, which was further offset by increases of renewable energy. India’s daily fossil-based CO2 emissions fell by –11.6% (–5 to –25.7%) by mid-June 2020 compared with mean levels of 2017–2019 with total change in fossil-based CO2 emission by –139 (–62 to –230) MtCO2, with the largest reduction in the industry (–41%), transport (–28.5%), and power (–21%) followed by the public (–5.4%), and aviation (–4%) sectors. If some levels of lockdown persist until December 2020, both energy consumption and CO2 emissions patterns would be below the 2019 level. The nationwide lockdown has led to a reduction in anthropogenic CO2 emissions and, subsequently, improved air quality and global environment and has also helped in reducing atmospheric CO2 concentrations at the local level but not on the global level. With suitable government policies, switching to a cleaner mode of energy generation other than fossil fuels could be a viable option to minimize CO2 emissions under increasing demand for energy.


Author(s):  
Vladimir A. Tremyasov ◽  
Yana E. Zograf ◽  
Tatyana V. Krivenko

The operation of renewable energy generation systems is associated with various risks. Risk analysis is part of a systematic approach to making technical decisions to prevent or reduce the risk of industrial accidents, damage to property and the environment. When evaluating the effectiveness of investment projects with renewable energy sources, risk assessment is carried out with uncertainty of information about the conditions of project implementation, including associated costs and economic losses. This article proposes a quantitative risk assessment method using cause – consequence diagrams, which are combined event trees and fault trees, on the example of the wind power installation NordWind (Germany)


2021 ◽  
Vol 139 ◽  
pp. 110695
Author(s):  
KM Nazmul Islam ◽  
Tapan Sarker ◽  
Farhad Taghizadeh-Hesary ◽  
Anashuwa Chowdhury Atri ◽  
Mohammad Shafiul Alam

Sign in / Sign up

Export Citation Format

Share Document