A short-term decline in anthropogenic emission of CO2 in India due to COVID-19 confinement

Author(s):  
Bikash Ranjan Parida ◽  
Somnath Bar ◽  
Nilendu Singh ◽  
Bakimchandra Oinam ◽  
Arvind Chandra Pandey ◽  
...  

To curb the spread of novel coronavirus (COVID-19), confinement measures were undertaken, which altered the pattern of energy consumption and India’s anthropogenic CO2 emissions during the effective lockdowns periods (January to June 2020). Such changes are being analyzed using data of energy generated from coal and renewable sources and fossil-based daily CO2 emissions. Results revealed that coal-fired (fossil-based) energy generation fell by –13% in March, –29% in April, and –20% in May, and –16.6% in mid-June 2020 as compared with the same period in 2018–2019. Conversely, the renewable energy generation increased by 19% in March, 12% in April, 17% in May, and 7% in June 2020. The share of fossil-based energy fell by –6.55% in 2020 compared with mean levels, which was further offset by increases of renewable energy. India’s daily fossil-based CO2 emissions fell by –11.6% (–5 to –25.7%) by mid-June 2020 compared with mean levels of 2017–2019 with total change in fossil-based CO2 emission by –139 (–62 to –230) MtCO2, with the largest reduction in the industry (–41%), transport (–28.5%), and power (–21%) followed by the public (–5.4%), and aviation (–4%) sectors. If some levels of lockdown persist until December 2020, both energy consumption and CO2 emissions patterns would be below the 2019 level. The nationwide lockdown has led to a reduction in anthropogenic CO2 emissions and, subsequently, improved air quality and global environment and has also helped in reducing atmospheric CO2 concentrations at the local level but not on the global level. With suitable government policies, switching to a cleaner mode of energy generation other than fossil fuels could be a viable option to minimize CO2 emissions under increasing demand for energy.

2019 ◽  
Vol 9 (7) ◽  
pp. 1484 ◽  
Author(s):  
Xiangwu Yan ◽  
Weichao Zhang

Due to the irreversible energy substitution from fossil fuels to clean energy, the development trend of future power systems is based on renewable energy generation. However, due to the incompatibility of converter-based non-dispatchable renewable energy generation, the stability and reliability of traditional power systems deteriorate as more renewables are introduced. Since conventional power systems are dominated by synchronous machines (SM), it is natural to utilize a virtual synchronous generator (VSG) control strategy that intimates SM characteristics on integrated converters. The VSG algorithm developed in this paper originates from mimicking mathematic models of synchronous machines. Among the different models of implementation, the second-order model is simple, stable, and compatible with the control schemes of current converters in traditional power systems. The VSG control strategy is thoroughly researched and case studied for various converter-interfaced systems that include renewable generation, energy storage, electric vehicles (EV), and other energy demands. VSG-based integration converters can provide grid services such as spinning reserves and inertia emulation to the upper grids of centralized plants, distributed generation networks, and microgrids. Thus, the VSG control strategy has paved a feasible way for an evolutionary transition to a power electronics-based future power grid. By referring to the knowledge of traditional grids, a hierarchical system of operations can be established. Finally, generation and loads can be united in universal compatibility architecture under consolidated synchronous mechanisms.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Yong-xiu He ◽  
Yue-xia Pang ◽  
Jie Guan

The curtailment of wind power and photovoltaic power is becoming increasingly serious from the year 2012 to present in China. And the small installed capacity captive coal-fired power plants have been developed rapidly aiming to cut production costs. Therefore, by the substitution of renewable energy for captive coal-fired power plants, this paper establishes a time-of-use (TOU) pricing mechanism with a linkage between the supply side and the demand side to promote renewable energy consumption, which is applied to the Western Inner Mongolia grid in China. The results show that the benefits to the grid company, electricity users, renewable energy producers, and social environment are influenced by the quantity of renewable energy purchased in the market, the market price for renewable energy, the quantity of electricity from grid to peak shaving, the carbon price, and the quantity of electricity generated by captive coal-fired power plants shifting to grid, in which the first factor has the greatest influence on the benefits of stakeholders. Furthermore, improving the accuracy of renewable energy generation forecast and optimizing using electricity behaviors by considering the renewable energy generation characteristics could ensure the TOU mechanism implementation successfully.


2021 ◽  
Vol 23 (06) ◽  
pp. 1128-1140
Author(s):  
Zahira Tabassum ◽  
◽  
Dr.Chandrashekhar Shastry ◽  

Excessive use of traditional energy sources such as fossil fuels has resulted in significant environmental deterioration. India is one of the world’s fastest-growing energy consumers, and it is making continual efforts to increase renewable energy generation. The use of renewable energy sources to generate electricity is expanding every day. Renewable energy integration with existing power systems is a difficult endeavor that necessitates strategy and development. Climate-friendly energy systems will result from the use of renewable energy sources in power generation, as they lower CO2 emissions caused by fossil fuels used in conventional power generation. This research looks at a renewable energy scenario using Gujarat as a case study, which is a leader in renewable energy generation. The policies taken by the Gujarat government to increase renewable energy’s participation in the energy mix, as well as the challenges and potential solutions for boosting the deployment of renewable energy sources across Gujarat, are discussed. This study can be used as a guide for policymakers and researchers in other states and around the world who want to boost renewable energy share.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2354
Author(s):  
Younes Zahraoui ◽  
M. Reyasudin Basir Khan ◽  
Ibrahim AlHamrouni ◽  
Saad Mekhilef ◽  
Mahrous Ahmed

Energy demand has been overgrowing in developing countries. Moreover, the fluctuation of fuel prices is a primary concern faced by many countries that highly rely on conventional power generation to meet the load demand. Hence, the need to use alternative resources, such as renewable energy, is crucial in order to mitigate fossil fuel dependency, while ensuring reductions in carbon dioxide emissions. Algeria—being the largest county in Africa—has experienced a rapid growth in energy demand over the past decade due to the significant increase in residential, commercial, and industry sectors. Currently, the hydrocarbon-rich nation is highly dependent on fossil fuels for electricity generation, with renewable energy only having a small contribution to the country’s energy mix. However, the country has massive potential for renewable energy generation, such as solar, wind, biomass, geothermal, and hydropower. Therefore, the government aims to diversify away from fossil fuels and promote renewable energy generation through policies and renewable energy-related programs. The country’s Renewable Energy and Energy Efficiency Development Plan focuses on large scale solar, wind generation as well as geothermal and biomass technologies. This paper provides an update on the current energy position and renewable energy status in Algeria. Moreover, this paper discusses renewable energy (RE) policies and programs that aim to increase the country’s renewable energy generation and its implementation status.


2021 ◽  
Vol 16 (1) ◽  
pp. 67-78
Author(s):  
Temitope M. Adeyemi-Kayode ◽  
◽  
Sanjay Misra ◽  
Robertas Damaševičius ◽  
◽  
...  

The limited supply of fossil fuels, constant rise in the demand of energy and the importance of reducing greenhouse emissions has brought about the adoption of renewable energy sources for generation of electrical power. In this paper, the impact of renewable energy generation in Nigeria is explored. A review of renewable deposits in Nigeria with a focus on Solar, Biomass, Hydropower, Pumped Storage Hydro and Ocean energy is detailed. The impact of renewable energy-based generation is assessed from three different dimensions: Economic Impact, Social Impact and Environmental Impact. In accessing economic impact; the conditions are employment and job creation, gross domestic product (GDP) growth and increase in local research and development. To analyze the social impact; renewable energy education, renewable energy businesses, ministries and institutes, renewable energy projects and investments as well as specific solar and wind projects across Nigeria were considered. Also, environmental issues were discussed. Similarly, policy imperatives for renewable energy generation in Nigeria was provided. This paper would be useful in accessing the successes Nigeria has experienced so far in the area of sustainable development and the next steps to achieving universal energy for all in Nigeria in 2030.


Sign in / Sign up

Export Citation Format

Share Document