scholarly journals Generating wreath products of symmetric and alternating groups

10.53733/108 ◽  
2021 ◽  
Vol 51 ◽  
pp. 85-93
Author(s):  
James East ◽  
James Mitchell

We show that the wreath product of two finite symmetric or alternating groups is 2-generated.

2007 ◽  
Vol 18 (05) ◽  
pp. 473-481
Author(s):  
BAOHUA FU

We recover the wreath product X ≔ Sym 2(ℂ2/± 1) as a transversal slice to a nilpotent orbit in 𝔰𝔭6. By using deformations of Springer resolutions, we construct a symplectic deformation of symplectic resolutions of X.


2012 ◽  
Vol 55 (2) ◽  
pp. 390-399 ◽  
Author(s):  
Jeffrey M. Riedl

AbstractWe determine the order of the automorphism group Aut(W) for each member W of an important family of finite p-groups that may be constructed as iterated regular wreath products of cyclic groups. We use a method based on representation theory.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
ADRIEN LE BOUDEC

We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$ , where $C$ is a finite group and $F$ a non-abelian free group.


2015 ◽  
Vol 26 (01) ◽  
pp. 1550003 ◽  
Author(s):  
Mihaita Berbec

In [M. Berbec and S. Vaes, W*-superrigidity for group von Neumann algebras of left–right wreath products, Proc. London Math. Soc.108 (2014) 1116–1152] we have proven that, for all hyperbolic groups and for all nontrivial free products Γ, the left–right wreath product group 𝒢 ≔ (ℤ/2ℤ)(Γ) ⋊ (Γ × Γ) is W*-superrigid, in the sense that its group von Neumann algebra L𝒢 completely remembers the group 𝒢. In this paper, we extend this result to other classes of countable groups. More precisely, we prove that for weakly amenable groups Γ having positive first ℓ2-Betti number, the same wreath product group 𝒢 is W*-superrigid.


2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.


1989 ◽  
Vol 40 (2) ◽  
pp. 255-279 ◽  
Author(s):  
L. G. Kovács

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding ‘imprimitive wreath decomposition’ concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The result may be heuristically expressed as follows, exploiting the associative nature of the construction. Each finite transitive permutation group may be written, essentially uniquely, as the wreath product of a sequence of wreath-indecomposable groups, amid the two-factor wreath decompositions of the group are precisely those which one obtains by bracketing this many-factor decomposition.If both input groups are nontrivial, the output above is always imprimitive. A similar construction gives a primitive output, called the wreath product in product action, provided the first input group is primitive and not regular. The second subject of the paper is the ‘product action wreath decomposition’ concept dual to this. An analogue of the result stated above is established for primitive groups with nonabelian socle.Given a primitive subgroup G with non-regular socle in some symmetric group S, how many subgroups W of S which contain G and have the same socle, are wreath products in product action? The third part of the paper outlines an algorithm which reduces this count to questions about permutation groups whose degrees are very much smaller than that of G.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
A. Esterov ◽  
L. Lang

AbstractWe introduce a new technique to prove connectivity of subsets of covering spaces (so called inductive connectivity), and apply it to Galois theory of problems of enumerative geometry. As a model example, consider the problem of permuting the roots of a complex polynomial $$f(x) = c_0 + c_1 x^{d_1} + \cdots + c_k x^{d_k}$$ f ( x ) = c 0 + c 1 x d 1 + ⋯ + c k x d k by varying its coefficients. If the GCD of the exponents is d, then the polynomial admits the change of variable $$y=x^d$$ y = x d , and its roots split into necklaces of length d. At best we can expect to permute these necklaces, i.e. the Galois group of f equals the wreath product of the symmetric group over $$d_k/d$$ d k / d elements and $${\mathbb {Z}}/d{\mathbb {Z}}$$ Z / d Z . We study the multidimensional generalization of this equality: the Galois group of a general system of polynomial equations equals the expected wreath product for a large class of systems, but in general this expected equality fails, making the problem of describing such Galois groups unexpectedly rich.


Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 683-689
Author(s):  
Suha Wazzan ◽  
Firat Ates ◽  
Ahmet Cevik

We first define a new consequence of the (restricted) wreath product for arbitrary two monoids. After that we give a generating and relator set for this new wreath product. Then we denote some finite and infinite applications about it. At the final part of this paper we show that this product satisfies the periodicity and regularity under some conditions.


10.37236/1113 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Anthony Henderson

We prove analogues for sub-posets of the Dowling lattices of the results of Calderbank, Hanlon, and Robinson on homology of sub-posets of the partition lattices. The technical tool used is the wreath product analogue of the tensor species of Joyal.


2018 ◽  
Vol 107 (1) ◽  
pp. 26-52 ◽  
Author(s):  
YVES CORNULIER

Wreath products of nondiscrete locally compact groups are usually not locally compact groups, nor even topological groups. As a substitute introduce a natural extension of the wreath product construction to the setting of locally compact groups. Applying this construction, we disprove a conjecture of Trofimov, constructing compactly generated locally compact groups of intermediate growth without any open compact normal subgroup.


Sign in / Sign up

Export Citation Format

Share Document