Variant Offset-Type Platinum Group Element Reef Mineralization in Basal Olivine Cumulates of the Kapalagulu Intrusion, Western Tanzania

2021 ◽  
Author(s):  
M. D. Prendergast

Abstract The Kapalagulu intrusion in eastern Tanzania hosts a major, 420-m-thick, stratiform/stratabound platinum group element (PGE)-bearing sulfide zone—the Lubalisi reef—within a prominent, chromititiferous, harzburgite unit close to its stratigraphic base. Several features of the vertical base and precious metal distributions (in a composite stratigraphic section based upon two deep exploration drill holes) display similarities to those of offset-type PGE reefs that formed under the overall control of Rayleigh fractionation: (1) composite layering (at several scales) defined by systematic vertical variations of sulfide and precious metal contents and intermetallic ratios, indicating repeated cycles of PGE enrichment and depletion in the order Pd-Pt-Au-Cu, and (2) in the lower part of the reef, stratigraphic offsets of the precious metal peaks below peak sulfide (Cu) content. The form and geochemistry of the reef are consistent with overturns of basal liquid layers within a liquid layering system (i.e., stable density-driven stratification of a magma chamber), plus at least two minor inputs of parental magma during which the resident magma was recharged with sulfur and metals, and the effective depletion of precious metals in the magma midway through reef development. The Lubalisi reef differs from classic offset-type PGE reefs, however, principally because individual Pd, Pt, and Au enrichment peaks are coincident, not offset. The reef is set apart from other offset-type PGE reefs in three additional ways: (1) its association with olivine cumulates that crystallized soon after initial magma emplacement and well below the first appearance of cumulus pyroxene or plagioclase (implying attainment of sulfide saturation and precious metal enrichment without prolonged concentration of sulfur and chalcophile metals by normal magma cooling and differentiation), (2) the probable role of chromite crystallization in not only triggering sulfide segregation during reef formation but also facilitating precious metal enrichment in the early stages of reef development, and (3) its great width. The early stage of fractionation may also help explain the coincident precious metal peaks through its effect on apparent precious metal partition coefficients.

2013 ◽  
Vol 353-356 ◽  
pp. 1183-1186 ◽  
Author(s):  
Jun Liu ◽  
Ying Chen ◽  
Zhen Xiu Liao ◽  
Yong Zhan ◽  
You Fei Guan

The black shale enriched in various precious metal elements and platinum group elements. And the PGE deposit in black shale series is a new promising mineral resource. Comprehensive research on the geology, geochemistry, petrology, mineralogy, fluid inclusion and geochronology of the PGE in black shale series has been carried out and made a series of achievements. This paper summarized the advances in PGE in black shale series and pointed out the controversial views about the source of the PGE.


2021 ◽  
Vol 59 (6) ◽  
pp. 1599-1626
Author(s):  
William D. Smith ◽  
Wolfgang D. Maier ◽  
Ian Bliss

ABSTRACT We have characterized the distribution of noble metals among six styles of magmatic sulfide mineralization in the Montagnais Sill Complex of the Labrador Trough in northern Québec using optical and electron microscopy combined with laser ablation-inductively coupled plasma-mass spectrometry trace element analysis of sulfides. The principal sulfide minerals include pyrrhotite, chalcopyrite, and pentlandite with accessory sphalerite and sulfarsenides. In addition, cubanite, troilite, and mackinawite are present in ultramafic-hosted assemblages. The precious metal mineral assemblages are dominated by tellurides, Ag-rich gold, and sperrylite which generally occur at the margins of sulfides. Few iridium-group platinum group element- and Rh-bearing grains were identified and mass-balance calculations show that these elements are generally hosted in pyrrhotite and pentlandite. Virtually all Pt and Au are hosted in precious metal grains, whereas Pd is distributed between precious metal grains and pentlandite. Where present, sulfarsenides are a key host of iridium-group platinum group element, Rh, Pd, Te, and Au. The presence of troilite, cubanite, and mackinawite and the absence of pentlandite exsolution lamellae in the ultramafic-hosted sulfides indicates an initial sulfide melt with a high metal/S ratio. Sulfarsenides present among globular sulfide assemblages derive from an immiscible As-rich melt that exsolved from the sulfide melt in response to the assimilation of the As-bearing floor rocks. In this study, the composition of sulfides is consistent with those derived from Ni-Cu-dominated deposits and not platinum group element-dominated deposits.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 187 ◽  
Author(s):  
Xiancheng Mao ◽  
Longjiao Li ◽  
Zhankun Liu ◽  
Renyu Zeng ◽  
Jeffrey Dick ◽  
...  

The giant Jinchuan nickel-copper-platinum-group element (PGE) deposit is hosted by two individual sub-vertical intrusions, referred to as the western and eastern intrusions (including segment II-W and segment II-E). Exactly how the Jinchuan deposit was formed by a system of sub-vertical magma conduits is still not well understood. This paper reports new major elements, trace elements and PGEs data from the Jinchuan deposit to study the formation mechanism of sulfide ores with different textures and their relationship with the magma conduit system. Our study shows that the PGE tenors of disseminated and net-textured sulfide in segment II-E are significantly lower than segment II-W and the western intrusion, but the Cu/Pd ratios are opposite. In addition, net-textured sulfides in segment II-W show a negative correlation between IPGE (Ir, Ru and Rh) and PPGE (Pt and Pd) in contrast to the positive correlation in segment II-E and the western intrusion. These features indicate the parental magma sources of the western intrusion, segment II-W and segment II-E were originally three different surges of PGE-depleted magma. Modeling of parental magma in the western intrusion, segment II-W and segment II-E suggests that they were formed by the same initial picritic basalt (100 ppm Cu, 1 ppb Ir and 10 ppb Pd) with different prior sulfide segregations (0.0075%, 0.0085% and 0.011%). The three parts of Jinchuan sulfides show that the Pt/Pd and (Pt + Pd)/(Ir + Ru + Rh) ratios decrease from section III-5 toward both sides in the western intrusion and decrease from section II-14 toward all sides, whereas no regular spatial variations occur in segment II-E, showing the different fractionation processes of sulfide melt. The massive sulfides in the western intrusion and segment II-E experienced a ~20% to 40% and ~40% to 60% fractionation of sulfide melt, respectively. We propose that the Jinchuan deposit was generated in a metallogenic system of multiple magma conduits, where sulfides entrained in parental magma experienced different amounts of prior removal.


1997 ◽  
Vol 34 (4) ◽  
pp. 375-389 ◽  
Author(s):  
Robert D. Thériault ◽  
Sarah-Jane Barnes ◽  
Mark J. Severson

The Dunka Road deposit is one of several Cu – Ni – platinum-group element (PGE) sulfide occurrences found along the northwestern margin of the Duluth Complex, where the host troctolitic rocks are in contact with metasedimentary rocks of the Animikie Group. Magma contamination through assimilation of sulfidic argillaceous country rocks is generally recognized as having played a key role in the genesis of the mineralization. Three main types of disseminated sulfide mineralization have been identified within the Dunka Road deposit: (i) norite-hosted sulfides, (ii) troctolite-hosted sulfides, and (iii) PGE-rich sulfide horizons. The norite-hosted sulfides are found either adjacent to country-rock xenoliths or near the basal contact. The troctolite-hosted sulfides form the bulk of the deposit, and occur throughout the lower 250 m of the intrusion. The PGE-rich sulfide horizons are typically localized directly beneath ultramafic layers. The composition of the different types of sulfide occurrences is modelled using Cu/Pd ratios. It is shown that each type results from the interplay of two main parameters, namely the degree of magma contamination and the silicate magma to sulfide melt ratio (R factor). The norite-hosted sulfides formed at low R factors and high degrees of contamination, as expressed by their PGE-depleted nature, low Se/S ratios, and elevated content in pyrrhotite and arsenide minerals. The troctolite-hosted sulfides formed at moderate R factors and small degrees of contamination, as shown by their moderate PGE content and mantle-like Se/S ratios. Finally, the PGE-rich sulfide horizons are modelled using elevated R factors from an uncontaminated parental magma, which is substantiated by their elevated noble metal content and Se/S ratios, and low pyrrhotite to precious metal sulfide ratio.


2016 ◽  
Author(s):  
Ijaz Ahmad ◽  
◽  
Jeremy P. Richards ◽  
Jingao Liu ◽  
D. Graham Pearson ◽  
...  

Author(s):  
Pedro Waterton ◽  
James Mungall ◽  
D. Graham Pearson

Sign in / Sign up

Export Citation Format

Share Document