duluth complex
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ville J. Virtanen ◽  
Jussi S. Heinonen ◽  
Ferenc Molnár ◽  
Max W. Schmidt ◽  
Felix Marxer ◽  
...  

AbstractMagmas readily react with their wall-rocks forming metamorphic contact aureoles. Sulphur and possibly metal mobilization within these contact aureoles is essential in the formation of economic magmatic sulphide deposits. We performed heating and partial melting experiments on a black shale sample from the Paleoproterozoic Virginia Formation, which is the main source of sulphur for the world-class Cu-Ni sulphide deposits of the 1.1 Ga Duluth Complex, Minnesota. These experiments show that an autochthonous devolatilization fluid effectively mobilizes carbon, sulphur, and copper in the black shale within subsolidus conditions (≤ 700 °C). Further mobilization occurs when the black shale melts and droplets of Cu-rich sulphide melt and pyrrhotite form at ∼1000 °C. The sulphide droplets attach to bubbles of devolatilization fluid, which promotes buoyancy-driven transportation in silicate melt. Our study shows that devolatilization fluids can supply large proportions of sulphur and copper in mafic–ultramafic layered intrusion-hosted Cu-Ni sulphide deposits.


2021 ◽  
Author(s):  
Ville Virtanen ◽  
Jussi Heinonen ◽  
Nicholas Barber ◽  
Ferenc Molnár

<p>The timing and degree of immiscible sulfide precipitation in a magma effectively controls the formation of magmatic sulfide deposits and the budget of degassing sulfur species in volcanic systems. Besides the absolute sulfur (S) content, sulfide precipitation is strongly affected by the sulfur content at sulfide saturation (SCSS) in the host silicate melt. Assimilation of S-rich wall-rocks, such as black shales, effectively increases the S content in the magma, while simultaneously lowering the SCSS. Accordingly, assimilation has been identified as the most important process in the formation of many economically significant magmatic base metal sulfide deposit, especially in continental tectonic settings. Detailed understanding of the relation between wall-rock assimilation and sulfide saturation requires accurate thermodynamic models for open magmatic systems experiencing assimilation-fractional crystallization (AFC).</p><p>The Magma Chamber Simulator (MCS) is currently the only geochemical modeling software that considers the thermodynamic phase equilibria in open magmatic systems involving magma and wall-rock (and recharge) subsystems. We utilized the MCS to explore how assimilation affects the SCSS and S content of the magma. With the current lack of thermodynamic data for sulfides, we tentatively modeled S as a trace element and varied its compatibility to wall-rock in the different models. For a case study, we chose the mafic layered intrusions of Duluth Complex, Minnesota, which host some of the largest Cu-Ni sulfide deposits in the world. Assimilation of the adjacent black shale has been established as the main source for S in the deposits.</p><p>Our MCS models show in detail how continuous assimilation of the black shale lowers the SCSS of the melt. Partial melt from the black shale enriches the magma in SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, and H<sub>2</sub>O, while depleting FeO, MgO, CaO, and Na<sub>2</sub>O, which causes a first order decrease in the SCSS. The compositional change also replaces troctolitic cumulates (plagioclase, olivine ± clinopyroxene) with norite (plagioclase and orthopyroxene), which leads to more pronounced FeO depletion in the melt, further lowering the SCSS. On the other hand, the assimilated partial melt also increases the melt mass in the magma subsystem, which counteracts the S enrichment. Accordingly, in the model where S is compatible to the wall-rock residual, the degree of sulfide saturation only slightly increases relative to the same magma experiencing FC without assimilation.</p><p>More than half of the wall-rock S must partition to the assimilated partial melt in order to meet the S isotopic criteria of the modeled Cu-Ni-deposits. The main stage of sulfide precipitation is associated with ~30 wt.% crystallization of the assimilating host magma. The proportion of sulfides relative to silicates in these models is smaller than observed in the Duluth Complex deposits, which underlines the role of dynamic processes in concentrating sulfides from the silicate magma.</p>


2020 ◽  
Vol 12 (24) ◽  
pp. 10286
Author(s):  
Ryan D. Bergstrom ◽  
Afton Clarke-Sather

In the northeastern corner of Minnesota, two of the state’s most iconic symbols, mining and pristine wilderness, are on a collision course. The Duluth Complex, considered by many to be the world’s largest undeveloped deposit of copper-nickel and precious metals, is the site of mining proposals for several controversial mines. Proponents suggest that mining can be accomplished in an environmentally benign manner, and in the process create nearly 1000 jobs and $500 million in economic benefits annually. Opponents counter that the tourism and recreation industries already provide nearly 18,000 jobs and bring over $900 million in economic benefits annually, and that mining will permanently impair the regions environment. Thus, the copper-nickel and precious metal mining debate has become highly polarized, and serves as an ideal example of how people address national and global sustainability issues at local and regional scales. This study examines this polarization through a Q-sort analysis of subjectivities of residents of the state of Minnesota. Results suggest that partisanship is a strong predictor of attitudes towards mining, and that the strongest differences between respondents were not based on perceptions comparing jobs and the environment, the typical partisan divide, but rather on respondents’ perceived identity with relation to the mining industry or water resources.


Geology ◽  
2020 ◽  
Author(s):  
Nicholas L. Swanson-Hysell ◽  
Steven A. Hoaglund ◽  
James L. Crowley ◽  
Mark D. Schmitz ◽  
Yiming Zhang ◽  
...  

The Duluth Complex (Minnesota, USA) is one of the largest mafic intrusive complexes on Earth. It was emplaced as the Midcontinent Rift developed in Laurentia’s interior during an interval of magmatism and extension from ca. 1109 to 1084 Ma. This duration of magmatic activity is more protracted than is typical for large igneous provinces interpreted to have formed from decompression melting of upwelling mantle plumes. While the overall duration was protracted, there were intervals of more voluminous magmatism. New 206Pb/238U zircon dates for the anorthositic and layered series of the Duluth Complex constrain these units to have been emplaced ca. 1096 Ma in <1 m.y. (duration of 500 ± 260 k.y.). Comparison of paleomagnetic data from these units with Laurentia’s apparent polar wander path supports this interpretation. This rapid emplacement bears similarities to the geologically short duration of well-dated large igneous provinces. These data support hypotheses that call upon the co-location of lithospheric extension and anomalously hot upwelling mantle. This rapid magmatic pulse occurred >10 m.y. after initial magmatism following >20° of latitudinal plate motion. A likely scenario is one in which upwelling mantle encountered the base of Laurentian lithosphere and flowed via “upside-down drainage” to locally thinned lithosphere of the Midcontinent Rift.


2020 ◽  
Author(s):  
Nicholas L Swanson-Hysell ◽  
et al.

Individual zircon dates, paleomagnetic site mean directions, and additional method details.<br>


2020 ◽  
Author(s):  
Nicholas L Swanson-Hysell ◽  
et al.

Individual zircon dates, paleomagnetic site mean directions, and additional method details.<br>


Author(s):  
Sarah M. Elliott ◽  
Perry M. Jones ◽  
Laurel G. Woodruff ◽  
Carrie E. Jennings ◽  
Aliesha L. Krall ◽  
...  

Terra Nova ◽  
2019 ◽  
Vol 31 (3) ◽  
pp. 247-256 ◽  
Author(s):  
Hideki Iwano ◽  
Tohru Danhara ◽  
Takashi Yuguchi ◽  
Takafumi Hirata ◽  
Masatsugu Ogasawara

Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 47 ◽  
Author(s):  
Benjamin Tutolo ◽  
Bernard Evans ◽  
Scott Kuehner

We present microanalyses of secondary phyllosilicates in altered ferroan metaperidotite, containing approximately equal amounts of end-members serpentine ((Mg,Fe2+)3Si2O5(OH)4) and hisingerite (□Fe3+2Si2O5(OH)4·nH2O). These analyses suggest that all intermediate compositions can exist stably, a proposal that was heretofore impossible because phyllosilicate with the compositions reported here have not been previously observed. In samples from the Duluth Complex (Minnesota, USA) containing igneous olivine Fa36–44, a continuous range in phyllosilicate compositions is associated with hydrothermal Mg extraction from the system and consequent relative enrichments in Fe2+, Fe3+ (hisingerite), Si, and Mn. Altered ferroan–olivine-bearing samples from the Laramie Complex (Wyoming, USA) show a compositional variability of secondary FeMg–phyllosilicate (e.g., Mg–hisingerite) that is discontinuous and likely the result of differing igneous olivine compositions and local equilibration during alteration. Together, these examples demonstrate that the products of serpentinization of ferroan peridotite include phyllosilicate with iron contents proportionally larger than the reactant olivine, in contrast to the common observation of Mg-enriched serpentine in “traditional” alpine and seafloor serpentinites. To augment and contextualize our analyses, we additionally compiled greenalite and hisingerite analyses from the literature. These data show that greenalite in metamorphosed banded iron formation contains progressively more octahedral-site vacancies (larger apfu of Si) in higher XFe samples, a consequence of both increased hisingerite substitution and structure modulation (sheet inversions). Some high-Si greenalite remains ferroan and seems to be a structural analogue of the highly modulated sheet silicate caryopilite. Using a thermodynamic model of hydrothermal alteration in the Fe–silicate system, we show that the formation of secondary hydrothermal olivine and serpentine–hisingerite solid solutions after primary olivine may be attributed to appropriate values of thermodynamic parameters such as elevated a S i O 2 ( a q ) and decreased a H 2 ( a q ) at low temperatures (~200 °C). Importantly, recent observations of Martian rocks have indicated that they are evolved magmatically like the ferroan peridotites analyzed here, which, in turn, suggests that the processes and phyllosilicate assemblages recorded here are more directly relevant to those occurring on Mars than are traditional terrestrial serpentinites.


Sign in / Sign up

Export Citation Format

Share Document