scholarly journals Cloning and Partial Characterization of Cotton Leaf Curl Burewala Virus From Khanewal

2021 ◽  
Vol 3 (1) ◽  
pp. 28-34
Author(s):  
Fizza Akhter ◽  
Muhammad Tahir

Begomoviruses are a serious threat to cotton production throughout the world. In Pakistan, enormous crop losses occur as a result of cotton leaf curl disease (CLCuD) caused by begomoviruses. Molecular characterization of begomoviruses has made possible the identification and analysis of begomoviruses prevalent in a host plant. Infected cotton leaf sample (C-59) was obtained from area around Khanewal during 2011. The total DNA was isolated from the infected sample by Cetyl trimethyl ammonium bromide (CTAB) method. An expected size band of approximately 1100bp, covering coat protein region of the virus, was amplified using universal primers. The amplified product was T/A cloned and sequenced to its entirety. DNA sequence showed 99% nucleotide sequence identity to each of Cotton leaf curl Burewala virus ((CLCuBuV; Accession No HF549Begomoviruses are a serious threat to cotton production throughout the world. In Pakistan, enormous crop losses occur as a result of cotton leaf curl disease (CLCuD) caused by begomoviruses. Molecular characterization of begomoviruses has made possible the identification and analysis of begomoviruses prevalent in a host plant. Infected cotton leaf sample (C-59) was obtained from area around Khanewal during 2011. The total DNA was isolated from the infected sample by Cetyl trimethyl ammonium bromide (CTAB) method. An expected size band of approximately 1100bp, covering coat protein region of the virus, was amplified using universal primers. The amplified product was T/A cloned and sequenced to its entirety. DNA sequence showed 99% nucleotide sequence identity to each of Cotton leaf curl Burewala virus ((CLCuBuV; Accession No HF549184)) and Cotton leaf curl Kokhran virus (CLCuKV; Accession No AJ002449)). Since CLCuBuV is a recombinant of CLCuKV and Cotton leaf curl Multan virus and the coat protein region of CLCuBuV was derived from CLCuKV that is most probable reason that the available sequence showed identity with CLCuBuV as well as CLCuKV. A complete characterization of full length virus will determine whether isolate C-59 is CLCuBuV or CLCuKV. Literature indicates that there is no existence of CLCuKV within the region and CLCuBuV is dominating within Indo-Pak184)) and Cotton leaf curl Kokhran virus (CLCuKV; Accession No AJ002449)). Since CLCuBuV is a recombinant of CLCuKV and Cotton leaf curl Multan virus and the coat protein region of CLCuBuV was derived from CLCuKV that is most probable reason that the available sequence showed identity with CLCuBuV as well as CLCuKV. A complete characterization of full length virus will determine whether isolate C-59 is CLCuBuV or CLCuKV. Literature indicates that there is no existence of CLCuKV within the region and CLCuBuV is dominating within Indo-Pak

PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e26929 ◽  
Author(s):  
C. G. Poornima Priyadarshini ◽  
M. V. Ambika ◽  
R. Tippeswamy ◽  
H. S. Savithri

2021 ◽  
Vol 9 (2) ◽  
pp. 304
Author(s):  
Yao Chi ◽  
Li-Long Pan ◽  
Shu-Sheng Liu ◽  
Shahid Mansoor ◽  
Xiao-Wei Wang

Cotton leaf curl Multan virus (CLCuMuV) is one of the major casual agents of cotton leaf curl disease. Previous studies show that two indigenous whitefly species of the Bemisia tabaci complex, Asia II 1 and Asia II 7, are able to transmit CLCuMuV, but the molecular mechanisms underlying the transmission are poorly known. In this study, we attempted to identify the whitefly proteins involved in CLCuMuV transmission. First, using a yeast two-hybrid system, we identified 54 candidate proteins of Asia II 1 that putatively can interact with the coat protein of CLCuMuV. Second, we examined interactions between the CLCuMuV coat protein and several whitefly proteins, including vacuolar protein sorting-associated protein (Vps) twenty associated 1 (Vta1). Third, using RNA interference, we found that Vta1 positively regulated CLCuMuV acquisition and transmission by the Asia II 1 whitefly. In addition, we showed that the interaction between the CLCuMuV coat protein and Vta1 from the whitefly Middle East-Asia Minor (MEAM1), a poor vector of CLCuMuV, was much weaker than that between Asia II 1 Vta1 and the CLCuMuV coat protein. Silencing of Vta1 in MEAM1 did not affect the quantity of CLCuMuV acquired by the whitefly. Taken together, our results suggest that Vta1 may play an important role in the transmission of CLCuMuV by the whitefly.


2021 ◽  
Author(s):  
Tahir Farooq ◽  
Muhammad Umar ◽  
Xiaoman She ◽  
Yafei Tang ◽  
Zifu He

Abstract Cotton leaf curl Multan virus (CLCuMuV) and its associated satellites are a major part of the cotton leaf curl disease (CLCuD) caused by the begomovirus species complex. Despite the implementation of potential disease management strategies, the incessant resurgence of resistance-breaking variants of CLCuMuV imposes a continuous threat to cotton production. Here, we present a focused effort to map the geographical prevalence, genomic diversity and molecular evolutionary endpoints that enhance disease complexity by facilitating the successful adaptation of CLCuMuV populations to the diversified ecosystems. Our results demonstrate that CLCuMuV populations are predominantly distributed in China while the majority of alphasatellites and betasatellites exist in Pakistan. We demonstrate that together with frequent recombination, an uneven genetic variation mainly drives CLCuMuV and its satellite’s virulence and evolvability. However, the pattern and distribution of recombination breakpoints greatly vary among viral and satellite sequences. The CLCuMuV, Cotton leaf curl Multan alphasatellite (CLCuMuA) and Cotton leaf curl Multan betasatellite (CLCuMuB) populations arising from distinct regions exhibit high mutation rates. Though evolutionary linked, these populations are independently evolving under strong purifying selection. These findings will facilitate to comprehensively understand the standing genetic variability and evolutionary patterns existing among CLCuMuV populations across major cotton-producing regions of the world.


2021 ◽  
Author(s):  
Judith K Brown

Abstract Cotton leaf curl Gezira virus (CLCuGV) is endemic to the African Sahel region (Idris et al., 2000). It is an economically important cotton-infecting begomovirus, and poses a serious threat to cotton production. It causes yield loss in all affected cotton-growing areas in Africa. Losses are difficult to assess, but estimates range up to 20% when infection occurs early in the growing season and/or with highly susceptible cultivars. Natural spread is mainly by the whitefly vector, Bemisia tabaci, which transmits the virus in a persistent, circulative manner. Viruliferous whiteflies on infested/infected plants harbouring CLCuGV imported to other countries are of concern for preventing introduction.


2010 ◽  
Vol 155 (3) ◽  
pp. 335-342 ◽  
Author(s):  
Adel M. Zakri ◽  
Angelika Ziegler ◽  
Lesley Torrance ◽  
Rainer Fischer ◽  
Ulrich Commandeur

Virus Genes ◽  
2012 ◽  
Vol 46 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Neha Tiwari ◽  
P. K. Sharma ◽  
V. G. Malathi

Viruses ◽  
2014 ◽  
Vol 6 (1) ◽  
pp. 223-242 ◽  
Author(s):  
Muhammad Ashraf ◽  
Ahmad Shahid ◽  
Abdul Rao ◽  
Kamran Bajwa ◽  
Tayyab Husnain

2000 ◽  
Vol 45 (20) ◽  
pp. 1869-1874 ◽  
Author(s):  
Yingqiu Xie ◽  
Zhen Zhu ◽  
Yule Liu ◽  
Qian Wu ◽  
Honglin Xu

Sign in / Sign up

Export Citation Format

Share Document