scholarly journals M-Connected Coverage Problem in Wireless Sensor Networks

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
S. Mini ◽  
Siba K. Udgata ◽  
Samrat L. Sabat

Solving coverage problem alone is not adequate in a wireless sensor network, since data has to be transmitted to the base station. This leads to the lookout for an energy efficient method to solve connected coverage problem. This paper addresses M-connected (each sensor node will have at least M other sensor nodes within its communication range) target coverage problem in wireless sensor networks, where the required level of connectivity and coverage may be high or low as required. We propose a heuristic for M-connected target coverage problem, where initially a cover is decided and later on it is checked for M-connectivity. M-connectivity for simple coverage, k-coverage, and Q-coverage is focussed on in this paper. We use a Low-Energy Adaptive Clustering Hierarchy (LEACH) inspired model, where a cluster is considered as a set of sensor nodes satisfying M-connectivity and required level of coverage. It is enough if one among these nodes transmits the monitored information to the base station. When the required level of coverage are high, chances of nodes being connected in the cover is high. Simulation results show that our proposed method can achieve better results than Communication Weighted Greedy Cover (CWGC).

2012 ◽  
Vol 8 (10) ◽  
pp. 254318 ◽  
Author(s):  
Xiu Deng ◽  
Jiguo Yu ◽  
Dongxiao Yu ◽  
Congcong Chen

Area coverage is one of the key issues for wireless sensor networks. It aims at selecting a minimum number of sensor nodes to cover the whole sensing region and maximizing the lifetime of the network. In this paper, we discuss the energy-efficient area coverage problem considering boundary effects in a new perspective, that is, transforming the area coverage problem to the target coverage problem and then achieving full area coverage by covering all the targets in the converted target coverage problem. Thus, the coverage of every point in the sensing region is transformed to the coverage of a fraction of targets. Two schemes for the converted target coverage are proposed, which can generate cover sets covering all the targets. The network constructed by sensor nodes in the cover set is proved to be connected. Compared with the previous algorithms, simulation results show that the proposed algorithm can prolong the lifetime of the network.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 74315-74325 ◽  
Author(s):  
Manju ◽  
Samayveer Singh ◽  
Sandeep Kumar ◽  
Anand Nayyar ◽  
Fadi Al-Turjman ◽  
...  

2010 ◽  
Vol 34-35 ◽  
pp. 1019-1023
Author(s):  
Zhao Feng Yang ◽  
Ai Wan Fan

Wireless sensor networks consist of hundreds or thousands of sensor nodes that involve numerous restrictions including computation capability and battery capacity. In this paper we propose an optimal algorithm with genetic algorithm taken into consideration, and compare it with three well known and widely used approaches, i.e., LEACH and LEACH-C, in performance evaluation. Experimental results show that the proposed approach increases the overall network lifetime, and data delivery at the base station than the other routing protocols. Key words: Wireless sensor networks, base station, heuristic optimized genetic algorithm, low energy adaptive clustering hierarchy


Sign in / Sign up

Export Citation Format

Share Document