target coverage problem
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
pp. 1-11
Author(s):  
Leila Ajam ◽  
Ali Nodehi ◽  
Hosein Mohamadi

Literature in recent years has introduced several studies conducted to solve the target coverage problem in wireless sensor networks (WSNs). Sensors are conventionally assumed as devices with only a single power level. However, real applications may involve sensors with multiple power levels (i.e., multiple sensing ranges each of which possesses a unique power consumption). Consequently, one of the key problems in WSNs is how to provide a full coverage on all targets distributed in a network containing sensors with multiple power levels and simultaneously prolong the network lifetime as much as possible. This problem is known as Maximum Network Lifetime With Adjustable Ranges (MNLAR) and its NP-completeness has been already proved. To solve this problem, we proposed an efficient hybrid algorithm containing Genetic Algorithm (GA) and Tabu Search (TS) aiming at constructing cover sets that consist of sensors with appropriate sensing ranges to provide a desirable coverage for all the targets in the network. In our hybrid model, GA as a robust global searching algorithm is used for exploration purposes, while TS with its already-proved local searching ability is utilized for exploitation purposes. As a result, the proposed algorithm is capable of creating a balance between intensification and diversification. To solve the MNLR problem in an efficient way, the proposed model was also enriched with an effective encoding method, genetic operators, and neighboring structure. In the present paper, different experiments were performed for the purpose of evaluating how the proposed algorithm performs the tasks defined. The results clearly confirmed the superiority of the proposed algorithm over the greedy-based algorithm and learning automata-based algorithm in terms of extending the network lifetime. Moreover, it was found that the use of multiple power levels altogether caused the extension of the network lifetime.


2021 ◽  
pp. 1-14
Author(s):  
Azam Qarehkhani ◽  
Mehdi Golsorkhtabaramiri ◽  
Hosein Mohamadi ◽  
Meisam Yadollahzadeh Tabari

Directional sensor networks (DSNs) are classified under wireless networks that are largely used to resolve the coverage problem. One of the challenges to DSNs is to provide coverage for all targets in the network and, at the same time, to maximize the lifetime of network. A solution to this problem is the adjustment of the sensors’ sensing ranges. In this approach, each sensor adjusts its own sensing range dynamically to sense the corresponding target(s) and decrease energy consumption as much as possible through forming the best cover sets possible. In the current study, a continuous learning automata-based method is proposed to form such cover sets. To assess the proposed algorithm’s performance, it was compared to the results obtained from a greedy algorithm and a learning automata algorithm. The obtained results demonstrated the superiority of the proposed algorithm regarding the maximization of the network lifetime.


2021 ◽  
pp. 45-74
Author(s):  
Shuxin Ding ◽  
Chen Chen ◽  
Qi Zhang ◽  
Bin Xin ◽  
Panos M. Pardalos

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3733
Author(s):  
Jaemin Kim ◽  
Younghwan Yoo

This paper proposes a sensor node activation method using the nature-inspired algorithm (NIA) for the target coverage problem. The NIAs have been used to solve various optimization problems. This paper formulates the sensor target coverage problem into an object function and solves it with an NIA, specifically, the bat algorithm (BA). Although this is not the first attempt to use the BA for the coverage problem, the proposed method introduces a new concept called bat couple which consists of two bats. One bat finds sensor nodes that need to be activated for sensing, and the other finds nodes for data forwarding from active sensor nodes to a sink. Thanks to the bat couple, the proposed method can ensure connectivity from active sensor nodes to a sink through at least one communication path, focusing on the energy efficiency. In addition, unlike other methods the proposed method considers a practical feature of sensing: The detection probability of sensors decreases as the distance from the target increases. Other methods assume the binary model where the success of target detection entirely depends on whether a target is within the threshold distance from the sensor or not. Our method utilizes the probabilistic sensing model instead of the binary model. Simulation results show that the proposed method outperforms others in terms of the network lifetime.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 74315-74325 ◽  
Author(s):  
Manju ◽  
Samayveer Singh ◽  
Sandeep Kumar ◽  
Anand Nayyar ◽  
Fadi Al-Turjman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document