ISRN Sensor Networks
Latest Publications


TOTAL DOCUMENTS

39
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

Published By Hindawi Limited

2090-7745

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
R. Velmani ◽  
B. Kaarthick

Amidst of the growing impact of wireless sensor networks (WSNs) on real world applications, numerous schemes have been proposed for collecting data on multipath routing, tree, clustering, and cluster tree. Effectiveness of WSNs only depends on the data collection schemes. Existing methods cannot provide a guaranteed reliable network about mobility, traffic, and end-to-end connection, respectively. To mitigate such kind of problems, a simple and effective scheme is proposed, which is named as cluster independent data collection tree (CIDT). After the cluster head election and cluster formation, CIDT constructs a data collection tree (DCT) based on the cluster head location. In DCT, data collection node (DCN) does not participate in sensing, which is simply collecting the data packet from the cluster head and delivering it into sink. CIDT minimizes the energy exploitation, end-to-end delay and traffic of cluster head due to transfer of data with DCT. CIDT provides less complexity involved in creating a tree structure, which maintains the energy consumption of cluster head that helps to reduce the frequent cluster formation and maintain a cluster for considerable amount of time. The simulation results show that CIDT provides better QoS in terms of energy consumption, throughput, end-to-end delay, and network lifetime for mobility-based WSNs.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Vinh Thong Ta ◽  
Levente Buttyán ◽  
Amit Dvir

We address the problem of formal and automated security verification of transport protocols for wireless sensor networks (WSN) that may perform cryptographic operations. The verification of this class of protocols is difficult because they typically consist of complex behavioral characteristics, such as real-time, probabilistic, and cryptographic operations. To solve this problem, we propose a probabilistic timed calculus for cryptographic protocols and demonstrate how to use this formal language for proving security or vulnerability of protocols. The main advantage of the proposed language is that it supports an expressive syntax and semantics, allowing for studying real-time, probabilistic, and cryptographic issues at the same time. Hence, it can be used to verify systems that involve these three properties in a convenient way. In addition, we propose an automatic verification method, based on the well-known PAT process analysis toolkit, for this class of protocols. For demonstration purposes, we apply the proposed manual and automatic proof methods for verifying the security of DTSN and SDTP, which are two of the recently proposed WSN transport protocols.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Sheng-Chung Tien ◽  
Robert Lin ◽  
Tsung-Yu Lee ◽  
Ren-Guey Lee ◽  
Shu-Ying Huang

According to the report “Global Health Risks of 2004” issued by WHO (World Health Organization) in Geneva 2009 (WHO, 2012), the mortality rate of the diseases and cause of death which results from the smoke produced by burning solid fuel is ranked tenth, occupying 3.3% of the global amounts, and the DALYs (Disability Adjusted Life Years) is ranked the ninth, occupying 2.7% of the world. Once the pollution occurred in an insufficient ventilation location, the womankind and children will be the most directly affected; therefore, we hoped to focus the measurement environment on indoor surroundings in this paper. This paper proposes a pointing at several kinds of indoor pollutants and integrating multigas sensors, which includes carbon monoxide, carbon dioxide total volatile organic compounds, and so forth. Our paper combines gas sensors with WSN (Wireless Sensor Networks) nodes; we provide users with optional monitoring subjects for constructing and also adapt ZigBee and Wi-Fi modules to get united with uploading real-time sensor messages. Moreover, for the reason of decreasing installation cost of sensors and setting up easily, this paper builds a cloud data-viewing platform additionally, enabling users to observe air quality through the cloud server everywhere.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ajib Setyo Arifin ◽  
Tomoaki Ohtsuki

We investigate the properties of data collection in wireless sensor networks, in terms of both capacity and power allocation strategy. We consider a scenario in which a number of sensors observe a target being estimated at fusion center (FC) using minimum mean-square error (MMSE) estimator. Based on the relationship between mutual information and MMSE (I-MMSE), the capacity of data collection in coherent and orthogonal multiple access channel (MAC) models is derived. Considering power constraint, the capacity is derived under two scenarios: equal power allocation and optimal power allocation of both models. We provide the upper bound of capacity as a benchmark. In particular, we show that the capacity of data collection scales as Θ((1/2)log(1+L)) when the number of sensors L grows to infinity. We show through simulation results that for both coherent and orthogonal MAC models, the capacity of the optimal power is larger than that of the equal power. We also show that the capacity of coherent MAC is larger than that of orthogonal MAC, particularly when the number of sensors L is large and the total power P is fixed.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Meenakshi Tripathi ◽  
M. S. Gaur ◽  
V. Laxmi ◽  
P. Sharma

Wireless sensor networks are widely used in many applications like battlefield monitoring, environment monitoring, and so forth. In all of these applications the cooperation among various sensor nodes is needed to forward the data packets to the base station. However, it expends the various resources of a sensor node such as battery power, storage, and processing power. Therefore, to conserve its own resources a node may become selfish by not forwarding the data to the others. This kind of attack has serious consequences if the attacker node is the leader of a cluster. In the presence of attack the base station will not be able to get the data from the victimized cluster while resources of the member of that cluster are being consumed. In this paper we propose a scheme called window based scheme (WBS) to detect this kind of misbehavior in WSN. Our detection scheme is energy efficient because most of the computations are done at base station only. Simulation results prove that our method detects and removes the attacker effectively and efficiently.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Tony Ducrocq ◽  
Michaël Hauspie ◽  
Nathalie Mitton

Clustering in wireless sensor networks is an efficient way to structure and organize the network. It aims at identifying a subset of nodes within the network and binding it to a leader (i.e., cluster head). The leader becomes in charge of specific additional tasks like gathering data from all nodes in its cluster and sending them using a longer range communication to a sink. As a consequence, a cluster head exhausts its battery more quickly than regular nodes. In this paper, we present four variants of BLAC, a novel battery level aware clustering family of schemes. BLAC considers the battery level combined with another metric to elect the cluster-head. The cluster-head role is taken alternately by each node to balance energy consumption. Due to the local nature of the algorithms, keeping the network stable is easier. BLAC aims at maximizing the time with all nodes alive to satisfy the application requirements. Simulation results show that BLAC improves the full network lifetime three times more than the traditional clustering schemes by balancing energy consumption over nodes and still deliveres high data ratio.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
R. N. Duche ◽  
N. P. Sarwade

Wireless sensor networks (WSNs) with efficient and accurate design to increase the quality of service (QoS) have become a hot area of research. Implementing the efficient and accurate WSNs requires deployment of the large numbers of portable sensor nodes in the field. The quality of service of such networks is affected by lifetime and failure of sensor node. In order to improve the quality of service, the data from faulty sensor nodes has to be ignored or discarded in the decision-making process. Hence, detection of faulty sensor node is of prime importance. In the proposed method, discrete round trip paths (RTPs) are compared on the basis of round trip delay (RTD) time to detect the faulty sensor node. RTD protocol is implemented in NS2 software. WSNs with circular topology are simulated to determine the RTD time of discrete RTPs. Scalability of the proposed method is verified by simulating the WSNs with various sensor nodes.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Emanuele Lattanzi ◽  
Matteo Dromedari ◽  
Valerio Freschi ◽  
Alessandro Bogliolo

Wireless sensor nodes spend most of the time waiting either for sensed data or for packets to be routed to the sink. While on board, sensors can raise hardware interrupts to trigger the wake-up of the processor, incoming packets require the radio module to be turned on in order to be properly received and processed; thus, reducing the effectiveness of dynamic power management and exposing the node to unintended packets cause energy waste. The capability of triggering the wake-up of a node over the air would makes it possible to keep the entire network asleep and to wake up the nodes along a path to the sink whenever there is a packet to transmit. This paper presents an ultrasonic wake-up trigger for ultra-low-power wireless sensor nodes developed as a plug-in module for VirtualSense motes. The module supports a simple out-of-band addressing scheme to enable the selective wake-up of a target node. In addition, it makes it possible to exploit the propagation speed of ultrasonic signals to perform distance measurements. The paper outlines the design choices, reports the results of extensive measurements, and discusses the additional degrees of freedom introduced by ultrasonic triggering in the power-state diagram of VirtualSense.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Ajib Setyo Arifin ◽  
Tomoaki Ohtsuki

We consider the distributed estimation of a random vector signal in a power constraint wireless sensor network (WSN) that follows a multiple-input and multiple-output (MIMO) coherent multiple access channel model. We design linear coding matrices based on linear minimum mean-square error (LMMSE) fusion rule that accommodates spatial correlated data. We obtain a closed-form solution that follows a water-filling strategy. We also derive a lower bound to this model. Simulation results show that when the data is more correlated, the distortion in terms of mean-square error (MSE) degrades. By taking into account the effects of correlation, observation, and channel matrices, the proposed method performs better than equal power method.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Junghun Ryu ◽  
Jaewook Yu ◽  
Eric Noel ◽  
K. Wendy Tang

Borel Cayley graphs have been shown to be an efficient candidate topology in interconnection networks due to their small diameter, short path length, and low degree. In this paper, we propose topology control algorithms based on Borel Cayley graphs. In particular, we propose two methods to assign node IDs of Borel Cayley graphs as logical topologies in wireless sensor networks. The first one aims at minimizing communication distance between nodes, while the entire graph is imposed as a logical topology; while the second one aims at maximizing the number of edges of the graph to be used, while the network nodes are constrained with a finite radio transmission range. In the latter case, due to the finite transmission range, the resultant topology is an “incomplete” version of the original BCG. In both cases, we apply our algorithms in consensus protocol and compare its performance with that of the random node ID assignment and other existing topology control algorithms. Our simulation indicates that the proposed ID assignments have better performance when consensus protocols are used as a benchmark application.


Sign in / Sign up

Export Citation Format

Share Document