scholarly journals Damage Assessment of Reinforced Concrete Structures: A Review

Author(s):  
Gomasa Ramesh ◽  

Damage may be assessed using several damage indices with values associated with different structural damage states. The usefulness of a variety of current response-based damage indices in seismic damage assessment is addressed and critically assessed. A novel rational damage assessment method is provided, which measures the structure’s physical reaction characteristics. A practical method based on various analyses is given to evaluate the damaged structures in earthquakes of different intensities. This paper provides an overview of previous research works on the damage assessment of the reinforced concrete structures. This study may be helpful for easy understanding about the damage assessment of reinforced concrete structures and reduce the impacts of disaster and surrounding structures.

2022 ◽  
Vol 1 (3) ◽  
pp. 1-7
Author(s):  
Gomasa Ramesh ◽  

Damage may be assessed using several damage indices with values associated with different structural damage states. The usefulness of a variety of current response-based damage indices in seismic damage assessment is addressed and critically assessed. A novel rational damage assessment method is provided, which measures the structure’s physical reaction characteristics. A practical method based on various analyses is given to evaluate the damaged structures in earthquakes of different intensities. This paper provides an overview of previous research works on the damage assessment of the reinforced concrete structures. This study may be helpful for easy understanding about the damage assessment of reinforced concrete structures and reduce the impacts of disaster and surrounding structures.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Haoxiang He ◽  
Maolin Cong ◽  
Yongwei Lv

A global damage index based on multiple linear force-deformation curves in pushover analysis is presented to evaluate the integrated damage of reinforced concrete structure. The modified coefficient is provided considering the cyclic load and hysteresis energy. The number of inelastic cycles and the coefficient of hysteresis energy concentration are also introduced as damage indices. Hence, multiple damage indices about displacement and energy for performance-based design are considered. The relation of multiple damage indices or factors and the fuzzy damage set is presented by comprehensive fuzzy evaluation; hence, a performance-based multiple fuzzy seismic damage-assessment method for reinforced concrete frame structures is established. The method can be accomplished based on pushover analysis, code spectrum, and capacity spectrum method. The fuzzy seismic damage-assessment method is verified through nonlinear analysis four different structures and the corresponding results and assessment conclusions are accurate.


1977 ◽  
Vol 67 (5) ◽  
pp. 1441-1472
Author(s):  
R. Husid ◽  
A. F. Espinosa ◽  
J. de las Casas

abstract The October 3, 1974, earthquake caused severe damage to buildings of adobe and quincha construction, and also to masonry, reinforced masonry, and reinforced-concrete structures in Lima and vicinity. Most of the damage to well-built structures was due, in part, to the lack of lateral resistance in the original design and to the fact that this earthquake had more energy around 0.4 seconds period than prior destructive earthquakes. Water tanks on the roofs of structures with four or five stories were damaged. Well-engineered single-story buildings were less affected than taller structures. Considerable structural damage to reinforced-concrete structures occurred in the districts of Barranco, La Campiña Molina, and Callao. In La Campiña three-story building partly collapsed and other buildings sustained considerable damage. In La Molina, the buildings of the Agrarian University sustained severe damage, and some collapsed. In Surco, the district adjacent to La Molina, there was no appreciable damage. In Callao, a four-story building collapsed, and the upper half of a concrete silo collapsed. In reinforced-concrete structures, column ties were frequently small in diameter, widely spaced, and not well connected. Usually, the reinforcement of resisting elements had no relation to their stiffnesses. Front columns in school buildings were restrained by high brick walls and had rather short effective lengths to allow building displacement in that direction. The windows in the rear walls gave the rear columns a much greater effective length. Therefore, a longitudinal displacement induces large shear forces in the front columns where most of the severe damage occurred. This problem was not considered in the design of these structures.


2009 ◽  
Vol 09 (04) ◽  
pp. 687-709 ◽  
Author(s):  
XINQUN ZHU ◽  
HONG HAO

Studied herein are the signatures of nonlinear vibration characteristics of damaged reinforced concrete structures using the wavelet transform (WT). A two-span RC slab built in 2003 was tested to failure in the laboratory. Vibration measurements were carried out at various stages of structural damage. The vibration frequencies, mode shapes, and damping ratios at each loading stage were extracted and analyzed. It is found that the vibration frequencies are not sensitive to small damages, but are good indicators when damage is severe. The dynamic responses are also analyzed in the time–frequency domain by WT and the skeleton curve is constructed to describe the nonlinear characteristics in the reinforced concrete structures. The results show that the skeleton curves are good indicators of damage in the reinforced concrete structures because they are more sensitive to small damages than vibration frequencies.


2011 ◽  
Vol 90-93 ◽  
pp. 2483-2486 ◽  
Author(s):  
Yan Ying Dong ◽  
Li Shan Zhang ◽  
Ming Zhang ◽  
Tian Zhi Zhu

In port engineering construction, the source of chloridion is concrete raw materials, admixtures and the penetration of seawater. Chloridion makes rebar corrosion, and makes the expansion and crack of reinforcement concrete, leading to concrete structural damage. By selecting the right concrete raw material, appropriate admixtures and to ensure concrete construction quality, in order to effectively avoid chloridion to the damage of reinforced concrete structures in construction.


2013 ◽  
Vol 53 (9) ◽  
pp. 1607-1619 ◽  
Author(s):  
A. Farhidzadeh ◽  
E. Dehghan-Niri ◽  
A. Moustafa ◽  
S. Salamone ◽  
A. Whittaker

Sign in / Sign up

Export Citation Format

Share Document