scholarly journals Induced Systemic Resistance by Bacillus vallismortis EXTN-1 Suppressed Bacterial Wilt in Tomato Caused by Ralstonia solanacearum

2007 ◽  
Vol 23 (1) ◽  
pp. 22-25 ◽  
Author(s):  
Kyung-Seok Park ◽  
Diby Paul ◽  
Yong-Ki Kim ◽  
Ki-Woong Nam ◽  
Young-Kee Lee ◽  
...  
Pedosphere ◽  
2017 ◽  
Vol 27 (6) ◽  
pp. 1135-1146 ◽  
Author(s):  
Chunyu LI ◽  
Weicong HU ◽  
Bin PAN ◽  
Yan LIU ◽  
Saifei YUAN ◽  
...  

2019 ◽  
Author(s):  
Tao Zhuo ◽  
Shiting Chen ◽  
Xiaojing Fan ◽  
Xun Hu ◽  
Huasong Zou

AbstractThe environmental bacterium Pseudomonas mosselii produces antagonistic secondary metabolites with inhibitory effects on multiple plant pathogens, including Ralstonia solanacearum, the causal agent of bacterial wilt. In this study, an engineered P. mosselii strain was generated to express R. solanacearum ripAA, which determines incompatible interactions with tobacco plants. The ripAA gene together with its native promoter was integrated into the P. mosselii chromosome. The resulting strain showed no difference in antimicrobial activity against R. solanacearum. Promoter-LacZ fusion and RT-PCR experiments demonstrated that the ripAA gene was transcribed in culture media. Compared with that of the wild type, the engineered strain reduced the disease index by 9.1% for bacterial wilt on tobacco plants. A transcriptome analysis was performed to identify differentially expressed genes in tobacco plants, and the results revealed that ethylene-and jasmonate-dependent defense signaling pathways were induced. These data demonstrated that the engineered P. mosselii expressing ripAA enables improved biological control against tobacco bacterial wilt by the activation of host defense responses.ImportanceNowadays, the use of biocontrol agents is more and more popular in agriculture, but they cannot replaced of chemical agents mostly, due to the poorer control effect. So the study about how to improve the efficacy of biocontrol agents become necessary and urgent. We increase the efficacy against plant pathogen through introducing an avirulence gene from plant pathogen into the biocontrol agent based on “gene to gene” hypothesis. The new engineered strain can improve the systemic resistance and elicit primary immune response of plants. Our research not only provides a new strategy for genetic modification of biocontrol agent, a number of avirulence gene from pathogen or plant can be tested to be expressed in different biocontrol agents to antagonize plant disease, but also help the study of interaction between phythopathogenic avirulence gene and host.


2021 ◽  
Vol 9 (7) ◽  
pp. 1441
Author(s):  
Van Bach Lam ◽  
Thibault Meyer ◽  
Anthony Arguelles Arias ◽  
Marc Ongena ◽  
Feyisara Eyiwumi Oni ◽  
...  

Rice monoculture in acid sulfate soils (ASSs) is affected by a wide range of abiotic and biotic constraints, including rice blast caused by Pyricularia oryzae. To progress towards a more sustainable agriculture, our research aimed to screen the biocontrol potential of indigenous Bacillus spp. against blast disease by triggering induced systemic resistance (ISR) via root application and direct antagonism. Strains belonging to the B. altitudinis and B. velezensis group could protect rice against blast disease by ISR. UPLC–MS and marker gene replacement methods were used to detect cyclic lipopeptide (CLiP) production and construct CLiPs deficient mutants of B. velezensis, respectively. Here we show that the CLiPs fengycin and iturin are both needed to elicit ISR against rice blast in potting soil and ASS conditions. The CLiPs surfactin, iturin and fengycin completely suppressed P. oryzae spore germination resulting in disease severity reduction when co-applied on rice leaves. In vitro microscopic assays revealed that iturin and fengycin inhibited the mycelial growth of the fungus P. oryzae, while surfactin had no effect. The capacity of indigenous Bacillus spp. to reduce rice blast by direct and indirect antagonism in ASS conditions provides an opportunity to explore their usage for rice blast control in the field.


Sign in / Sign up

Export Citation Format

Share Document