scholarly journals Measurement of Ozone at Maitri, Antarctica

MAUSAM ◽  
2021 ◽  
Vol 50 (2) ◽  
pp. 203-210
Author(s):  
V. S. TIWARI

Regular ozone profile measurement over Antarctica has been made by India Meteorological Department since 1987 at Dakshin Gangotri and later at Maitri (70.7°S, 11.7°E) since 1990 with the help of Indian electro-chemical ozone sonde. Surface ozone measurement was also started at Dakshin Gangotri since 1989 and later at Maitri. Ozone sonde data at Dakshin Gangotri and Maitri have been analysed and ozone hole structure has been studied in detail. The drastic decrease in ozone amount is clearly seen between 100 hPa to 30 hPa layer reaching near zero value. Incidently this is the layer where highest ozone concentration occurs during other months except September-October. The ozone hole has been quite severe during 1994-95 with increase in area and depth. During 1996 the Antarctic ozone hole was also similar to previous years. An interesting feature of the 1995 event was the persistence of ozone hole through November & December. Stratospheric temperature changes during 1995 also support that the cold core vortex during 1995 was very cold and persisted up to November.

MAUSAM ◽  
2021 ◽  
Vol 64 (4) ◽  
pp. 613-624
Author(s):  
R.P. LAL ◽  
SURESH RAM

Hkkjr ekSle foKku foHkkx }kjk Hkkjrh; bysDVªks&dsfedy vkstksulkSans dh enn ls ,aVkdZfVdk ij Hkkjr ds nwljs LVs'ku eS=h ¼70-7 fMxzh n-] 11-7 fMxzh iw-½ ls vkstksu fLFkfr ¼izksQkby½ dk fu;fer eki fd;k tk jgk gSA ok;qeaMy ds mnxz LraHk esa vkstksu ds ?kuRo dh x.kuk iwjs o"kZ esa fy, x, lkIrkfgd vkstksu lkmfUMax ls dh tkrh gSA ok;qeaMyh; vkstksu dh mnxz fLFkfr ¼izksQkby vkSj vkstksu fNnz ¼gksy½ dh fo'ks"krkvksa dk v/;;u djus ds fy, flracj&vDVwcj ekg ds nkSjku cgqr ckj ifjKfIr;k¡ ¼lkmfUMax½ yh xbZ gSaA bl 'kks/k i= esa lrg ls 10 gsDVk ik- ds chp vkstksu vkSj rkieku ds ekfld ,oa okf"kZd vkSlr esa fofo/krk dh x.kuk ,oa fo'ys"k.k o"kZ 1999 ls 2007 dh vof/k esa fy, vkstksulkSans vkjksg.kksa ls fd;k x;k gSA bl v/;;u ls irk pyk gS fd vkstksu fNnz ds laca/k esa xgu vo{k; vDrwcj esa vkSj vYi ijUrq egRoiw.kZ vo{k; flracj ekg esa gqvk gSA vDrwcj esa yxHkx 250 ,oa 20 gs-ik- ds chp lcls lqLi"V vo{k; gqvk gS ftlesa vf/kdre LFkkuh; vkstksu ds Lrj esa 70 gs-ik- vkSj 10 gs- ik- ds Lrjksa ij vkSj flrEcj esa 70 gs- ik- ij fxjkoV  ns[kh xbZA fHkUu&fHkUu nkc Lrjksa ds fy, vkstksu dk rkieku ds lkFk lglaca/k ls ubZ tkudkfj;ksa vkSj vkstksu ifjorZu esa foLrkj dk irk pyk gSA iwjs o"kZ esa 300 ls 50 gs- ik- ds chp U;wure okf"kZd vkSlr rkieku -55 fMxzh ls -63 fMxzh lsaVhxzsM rd cnyrk gSA vxLr vkSj flrEcj ds eghuksa esa     70 gs- ik- rFkk 100 gs- ik- Lrjksa ij rkieku dk -80 fMxzh lsaVhxzsM ls de gksuk ,oa vDrwcj ekg esa 70 gs- ik- rFkk 100 gs- ik- Lrjksa ij yxHkx -70 fMxzh lsaVhxzsM ls de gksus dh fLFkfr dks vDrwcj ekg esa vkst+ksu vo{k; ds ladsrd ds :i esa ekuk tk ldrk gSA Regular ozone profile measurement over Antarctica has been made by India Meteorological Department over Indian second station Maitri (70.7° S, 11.7° E) with the help of Indian electro-chemical ozonesonde. Ozone density in the vertical column of the atmosphere is computed with weekly ozone soundings taken throughout the year. During the month of September- October more frequent soundings were taken to study vertical profile of atmospheric ozone and features of ozone hole. The mean monthly and yearly variation of ozone and temperature from surface to 10 hPa has been computed and analyzed from the ozonesonde ascents for the period 1999 to 2007. The study has shown profound depletion in October and lesser but substantial depletion in September, in association with the ozone hole. Depletion is most pronounced between about 250 and 20 hPa in October, with maximum local ozone losses near   70 hPa & 100 hPa levels and in September at 70 hPa. Ozone correlations with temperature for several pressure levels have revealed new insights into the causes and extent of ozone change. Lowest annual mean temperature varies from -55 to -63 °C between 300 to 50 hPa in all the year. The temperature less than -80 °C in months of August & September at 70 hPa & 100 hPa levels and about -70 °C in month of October at 70 hPa & 100 hPa levels can be attributed as an indicator of ozone depletion in months of October


2017 ◽  
Author(s):  
Sweta Shah ◽  
Olaf Tuinder ◽  
Jacob van Peet ◽  
Adrianus de Laat ◽  
Piet Stammes

Abstract. The depletion of the Antarctic ozone layer and its changing vertical distribution has been monitored closely by satellites in the past decades ever since the Antarctic ozone hole was discovered in the 1980's. Ozone profile retrieval from nadir-viewing satellites operating in the ultraviolet-visible range requires accurate calibration of level-1 (L1) radiance data. Here we study the effects of calibration on the derived level-2 (L2) ozone profiles and apply the retrieval to the Antarctic ozone hole region. We retrieve nadir ozone profiles from the SCIAMACHY instrument that flew on-board Envisat using the Ozone ProfilE Retrieval Algorithm) (OPERA) developed at KNMI with a focus on the stratospheric ozone. We study and assess the quality of these profiles and compare retrieved (L2) products from L1 SCIAMACHY versions 7 and 8 indicated as respectively (v7, v8) data from the years 2003–2011 without further radiometric correction. From validation of the profiles against ozone sonde measurements, we find that the v8 performs better due to correction for the scan-angle dependency of the instrument's optical degradation. The instrument spectral response function can still be improved for the L1 v8 data with a shift and squeeze. We find that the contribution from this improvement is a few percent residue reduction compared to a reference in the solar irradiance spectra. Validation for the years 2003 and 2009 with ozone sondes shows deviations of SCIAMACHY ozone profiles of 0.8 %–15 % in the stratosphere and 2.5 %–100 % in the troposphere, depending on the latitude and the L1 version used. Using L1 v8 for the years 2003–2011 leads to deviations of ~ 1 %–11 % in stratospheric ozone and ~ 1 %–45 % in tropospheric ozone. Application of SCIAMACHY v8 data on the Antarctic ozone hole shows that most ozone is depleted in the latitude range from 70° S to 90° S. The minimum integrated ozone column consistently occurs around 15 September for the years 2003–2011. Furthermore from the ozone profiles for all these years we observe that the value of ozone column per layer reduces to almost zero at a pressure of 100 hPa in the latitude range of 70° S to 90° S, as was found from other observations.


2005 ◽  
Vol 62 (3) ◽  
pp. 581-588 ◽  
Author(s):  
H. K. Roscoe ◽  
J. D. Shanklin ◽  
S. R. Colwell

Abstract In late September 2002, the Antarctic ozone hole was seen to split into two parts, resulting in large increases in ozone at some stations and the potential for significant modification of chlorofluorocarbon (CFC)-induced ozone loss. The phenomenon was dynamical (a split vortex), causing large increases in stratospheric temperature above stations normally within the vortex. Temperatures at Halley, Antarctica, at 30 hPa increased by over 60 K, and temperatures at South Pole at 100 hPa increased by over 25 K. It is important to know if this has happened before, since if it happens in the future, it would significantly alter the total hemispheric ozone loss due to chlorine from CFCs, particularly if it happens in August or September. Temperatures in winter and spring measured at Halley or the South Pole since 1957 and 1961, respectively, show no other comparable increases until the final warming in late spring, except for two dates in the 1980s at Halley when meteorological analyses show no vortex split. There are very few periods of measurements missing at both Halley and the South Pole, and analyses in those few periods show no vortex split. Measurements in August and September at sites normally near the edge of the vortex show very few suspicious dates, and analyses of those few suspicious dates again show no vortex split. It is concluded that the vortex has probably not split before the final warming since Antarctic records began in the late 1950s, and almost certainly not in August or September.


Nature ◽  
2019 ◽  
Vol 575 (7781) ◽  
pp. 46-47 ◽  
Author(s):  
Susan Solomon

2004 ◽  
Vol 31 (21) ◽  
pp. n/a-n/a ◽  
Author(s):  
Paul A. Newman ◽  
S. Randolph Kawa ◽  
Eric R. Nash

Sign in / Sign up

Export Citation Format

Share Document