ozone column
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 71)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Gérard Ancellet ◽  
Sophie Godin-Beekmann ◽  
Herman G. J. Smit ◽  
Ryan M. Stauffer ◽  
Roeland Van Malderen ◽  
...  

Abstract. The Observatoire de Haute Provence (OHP) weekly Electrochemical Concentration Cell (ECC) ozonesonde data have been homogenized for the time period 1991–2020 according to the recommendations of the Ozonesonde Data Quality Assessment (O3S-DQA) panel. The assessment of the ECC homogenization benefit has been carried out using comparisons with ground based instruments also measuring ozone at the same station (lidar, surface measurements) and with collocated satellite observations of the O3 vertical profile by Microwave Limb Sounder (MLS). The major differences between uncorrected and homogenized ECC are related to a change of ozonesonde type in 1997, removal of the pressure dependency of the ECC background current and correction of internal ozonesonde temperature. The 3–4 ppbv positive bias between ECC and lidar in the troposphere is corrected with the homogenization. The ECC 30-years trends of the seasonally adjusted ozone concentrations are also significantly improved both in the troposphere and the stratosphere when the ECC concentrations are homogenized, as shown by the ECC/lidar or ECC/surface ozone trend comparisons. A −0.29 % per year negative trend of the normalization factor (NT) calculated using independent measurements of the total ozone column (TOC) at OHP disappears after homogenization of the ECC. There is however a remaining −5 % negative bias in the TOC which is likely related to an underestimate of the ECC concentrations in the stratosphere above 50 hPa as shown by direct comparison with the OHP lidar and MLS. The reason for this bias is still unclear, but a possible explanation might be related to freezing or evaporation of the sonde solution in the stratosphere. Both the comparisons with lidar and satellite observations suggest that homogenization increases the negative bias of the ECC up to 10 % above 28 km.


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 595-600
Author(s):  
S.K. PESHIN

Vertical column density of sulphur dioxide has been measured at Maitri (70.7°S, 11.7°E), the Indian station in the Antarctica from September, 1999 to December, 2006 by a Brewer Spectrophotometer. Simultaneously, nitrogen dioxide, ozone and the maximum value of UV-B have also been measured, we found an increase in SO2 during spring. An increase in NO2 column was also found during this period but not identical with that of SO2. These variations in SO2 and NO2 are not in phase with the increase in UV-B flux at the ground due to the decrease of ozone column in the stratosphere. The variation of SO2 column is explained by the downward shift of penetration depth of UV-B radiation during the ozone-hole event.


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 577-584
Author(s):  
S.L. JAIN

The ozone in the stratosphere is of great importance for very survival of life on the mother planet the Earth. Ozone acts as an umbrella and protects us from the harmful ultraviolet radiations coming from the Sun. The catalytic destruction of ozone by ClOx & NOx in general and ozone hole phenomenon over Antarctica during spring time in particular has generated unprecedented interest in monitoring of ozone and other trace constituents in the atmosphere. The satellites have proved to be an important tool to monitor the global ozone column on regular basis. The ozone data using various satellite platforms has been analyzed for the ozone hole studies over north and south poles. Also Ozone measurements were carried out at Maitri, Antarctica. The satellite data indicates that some recovery of ozone hole as a result of international efforts in reduction of use of CFCs which are the main culprit for ozone hole. However, it will be too early to conclude about ozone hole recovery. In the present communication current status of ozone hole will be discussed in detail.


2021 ◽  
Vol 14 (12) ◽  
pp. 7405-7433
Author(s):  
Daan Hubert ◽  
Klaus-Peter Heue ◽  
Jean-Christopher Lambert ◽  
Tijl Verhoelst ◽  
Marc Allaart ◽  
...  

Abstract. Ozone in the troposphere affects humans and ecosystems as a pollutant and as a greenhouse gas. Observing, understanding and modelling this dual role, as well as monitoring effects of international regulations on air quality and climate change, however, challenge measurement systems to operate at opposite ends of the spatio-temporal scale ladder. Aboard the ESA/EU Copernicus Sentinel-5 Precursor (S5P) satellite launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aspires to take the next leap forward by measuring ozone and its precursors at unprecedented horizontal resolution until at least the mid-2020s. In this work, we assess the quality of TROPOMI's first release (V01.01.05–08) of tropical tropospheric ozone column (TrOC) data. Derived with the convective cloud differential (CCD) method, TROPOMI daily TrOC data represent the 3 d moving mean ozone column between the surface and 270 hPa under clear-sky conditions gridded at 0.5∘ latitude by 1∘ longitude resolution. Comparisons to almost 2 years of co-located SHADOZ ozonesonde and satellite data (Aura OMI and MetOp-B GOME-2) conclude to TROPOMI biases between −0.1 and +2.3 DU (<+13 %) when averaged over the tropical belt. The field of the bias is essentially uniform in space (deviations <1 DU) and stable in time at the 1.5–2.5 DU level. However, the record is still fairly short, and continued monitoring will be key to clarify whether observed patterns and stability persist, alter behaviour or disappear. Biases are partially due to TROPOMI and the reference data records themselves, but they can also be linked to systematic effects of the non-perfect co-locations. Random uncertainty due to co-location mismatch contributes considerably to the 2.6–4.6 DU (∼14 %–23 %) statistical dispersion observed in the difference time series. We circumvent part of this problem by employing the triple co-location analysis technique and infer that TROPOMI single-measurement precision is better than 1.5–2.5 DU (∼8 %–13 %), in line with uncertainty estimates reported in the data files. Hence, the TROPOMI precision is judged to be 20 %–25 % better than for its predecessors OMI and GOME-2B, while sampling at 4 times better spatial resolution and almost 2 times better temporal resolution. Using TROPOMI tropospheric ozone columns at maximal resolution nevertheless requires consideration of correlated errors at small scales of up to 5 DU due to the inevitable interplay of satellite orbit and cloud coverage. Two particular types of sampling error are investigated, and we suggest how these can be identified or remedied. Our study confirms that major known geophysical patterns and signals of the tropical tropospheric ozone field are imprinted in TROPOMI's 2-year data record. These include the permanent zonal wave-one pattern, the pervasive annual and semiannual cycles, the high levels of ozone due to biomass burning around the Atlantic basin, and enhanced convective activity cycles associated with the Madden–Julian Oscillation over the Indo-Pacific warm pool. TROPOMI's combination of higher precision and higher resolution reveals details of these patterns and the processes involved, at considerably smaller spatial and temporal scales and with more complete coverage than contemporary satellite sounders. If the accuracy of future TROPOMI data proves to remain stable with time, these hold great potential to be included in Climate Data Records, as well as serve as a travelling standard to interconnect the upcoming constellation of air quality satellites in geostationary and low Earth orbits.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1582
Author(s):  
Saleha Al-Kallas ◽  
Motirh Al-Mutairi ◽  
Heshmat Abdel Basset ◽  
Ayman Badawy ◽  
Abdallah Abdeldym ◽  
...  

The aim of this work was to study the variation in the total ozone column amount (TOC) during the life cycle of the tropical cyclone (TC) that occurred over the northwest Indian Ocean from 14 to 25 October 2008. This goal was achieved through examining the behavior of the tropical cyclone tilt under vertically varying background flows in association with the cyclone development. Thus, the vertical wind shear (VWS) was estimated as one of the most important dynamical parameters related to TC formation and intensity changes. Moreover, we estimated the variations in the daily values of TOC during the period of cyclone activity. We found that the magnitude of VWS increased during the growth period, and VWS weakened during the decay period. Anomalies of daily TOC were found to reduce steadily before and during the cyclone formation, followed by an increasing trend after the dissipation of cyclone. It was also found that during the development of the tropical cyclone, an outflow developed in the upper levels, having high velocities that extended beyond the tropopause up to the lower stratosphere. As a result, the lowest value of TOC during the tropical cyclone was due to a large amount of injected water vapor from the troposphere into the stratosphere through the convection processes. This was mostly photo-dissociated into OH and atomic O by deep solar radiation in the upper and lower stratosphere, leading to a severe reduction in stratospheric ozone.


2021 ◽  
Author(s):  
Viktoria F. Sofieva ◽  
Risto Hänninen ◽  
Mikhail Sofiev ◽  
Monika Szelag ◽  
Hei Shing Lee ◽  
...  

Abstract. The satellite measurements in nadir and limb viewing geometry provide a complementary view of the atmosphere. An effective combination of the limb and nadir measurements can provide a new information about atmospheric composition. In this work, we present tropospheric ozone column datasets that have been created using combination of total ozone column from OMI and TROPOMI with stratospheric ozone column dataset from several available limb-viewing instruments (MLS, OSIRIS, MIPAS, SCIAMACHY, OMPS-LP, GOMOS). We have developed further the methodological aspects of assessment of tropospheric ozone using the residual method using simulations with the chemistry-transport model SILAM. It has been shown that the accurate assessment of ozone in the upper troposphere and the lower stratosphere (UTLS) is of high importance for detecting the ground-level ozone patterns. The stratospheric ozone column is derived from a combination of ozone profiles from several satellite instruments in limb-viewing geometry. We developed a method for the data homogenization, which includes the removal of biases and a-posteriori estimation (validation) of random uncertainties, thus making the data from different instruments compatible with each other. The high horizontal and vertical resolution dataset of ozone profiles is created via interpolation of the limb profiles from each day to 1° × 1° horizonal grid. A new kriging-type interpolation method, which takes into account data uncertainties and the information about natural ozone variations from the SILAM-adjusted ozone field, has been developed. To mitigate the limited accuracy and coverage of the limb profile data in the UTLS, a smooth transition to the model data is applied below the tropopause. This allows estimation of stratospheric ozone column with full coverage of the UTLS. The derived ozone profiles are in very good agreement with collocated ozonesonde measurements. The residual method was successfully applied to OMI and TROPOMI clear-sky total ozone data in combination with the stratospheric ozone column from the high-resolution limb profile dataset. The resulting tropospheric ozone column is in very good agreement with other satellite data. The global distributions of tropospheric ozone exhibit enhancements associated with the regions of high tropospheric ozone production. The main created datasets are (i) monthly 1° × 1° global tropospheric ozone column dataset using OMI and limb instruments, (ii) monthly 1° × 1° global tropospheric ozone column dataset using TROPOMI and limb instruments and (iii) daily 1° × 1° interpolated stratospheric ozone column from limb instruments. Other datasets, which are created as an intermediate step of creating the tropospheric ozone column data, are: (i) daily 1° × 1° clear sky and total ozone column from OMI and TROPOMI (ii) Daily 1° × 1° homogenized and interpolated dataset of ozone profiles and (iii) daily 1° × 1° dataset of ozone profiles from SILAM simulations with adjustment to satellite data. These datasets can be used in various studies related to ozone distributions, variability and trends, both in the troposphere and the stratosphere.


2021 ◽  
Vol 13 (21) ◽  
pp. 4404
Author(s):  
Alexander Kokhanovsky ◽  
Simon Gascoin ◽  
Laurent Arnaud ◽  
Ghislain Picard

We proposed a simple algorithm to retrieve the total ozone column and snow properties (spectral albedo and effective light absorption path) using the high spatial resolution single–view MSI/S-2 measurements over Antarctica. In addition, the algorithm allows the retrieval of the snow grain size on a scale of 10–20 m. This algorithm should be useful for the understanding of intra-pixel total ozone and snow albedo variability in complement to satellite observations performed on a much coarser spatial resolution scale (0.3–1 km and even larger spatial scales).


2021 ◽  
Vol 14 (10) ◽  
pp. 6623-6645
Author(s):  
Arseniy Karagodin-Doyennel ◽  
Eugene Rozanov ◽  
Timofei Sukhodolov ◽  
Tatiana Egorova ◽  
Alfonso Saiz-Lopez ◽  
...  

Abstract. In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %–4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %–10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5 %–2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.


Author(s):  
Firas. H.Y., Waleed, I.J. AL-Rijabo Firas. H.Y., Waleed, I.J. AL-Rijabo

  This Research aimed at find a correlation between Total Ozone Column (TOC) and Latitude in different regions in Iraq using several Mathematical Models. Models were used for that [Linear Models, Quadratic Models, Exponential Models, Logarithmic Models, Power Models]. Several statistical tests [R2, R, MAE, RMSE] were used to control the validation and goodness of these Models. Quadratic Model gave the highest R2 among the other models in all stations. R2 obtained between (TOC) & Latitude in Winter & Spring months were very high and ranged between (0.953 – 0. 976). Summer months show a good correlation in June & July and week correlation in August. In Autumn months a good correlation was obtained in October & November and week correlation was obtained in September. The highest R2 means that there is a highly significance correlations between Total Ozone Column and Latitude. This mean that these Models gave a very good results to estimate (TOC) from Latitude.


Sign in / Sign up

Export Citation Format

Share Document