scholarly journals Long-term variations in the characteristics of the equatorial stratospheric zonal winds

MAUSAM ◽  
2022 ◽  
Vol 52 (3) ◽  
pp. 515-526
Author(s):  
R. P. KANE

Stratospheric equatorial zonal winds from 1951 onwards up to the present show considerable long-term variations, more so at higher levels, These are rarely monotonic and often show multi-periodic structures, including a sunspot cycle (II year variations), Stratospheric temperatures and geopotential heights also show multi-periodic variations, A periodicity near 20 years is encountered often.

Boreas ◽  
2021 ◽  
Author(s):  
Zoltán Püspöki ◽  
Philip Leonard Gibbard ◽  
Annamária Nádor ◽  
Edit Thamó‐Bozsó ◽  
Pál Sümegi ◽  
...  

2021 ◽  
Vol 270 ◽  
pp. 116285
Author(s):  
Lewei Zeng ◽  
Hai Guo ◽  
Xiaopu Lyu ◽  
Beining Zhou ◽  
Zhenhao Ling ◽  
...  

2020 ◽  
Vol 14 (3) ◽  
pp. 295-302
Author(s):  
Chuandong Zhu ◽  
Wei Zhan ◽  
Jinzhao Liu ◽  
Ming Chen

AbstractThe mixture effect of the long-term variations is a main challenge in single channel singular spectrum analysis (SSA) for the reconstruction of the annual signal from GRACE data. In this paper, a nonlinear long-term variations deduction method is used to improve the accuracy of annual signal reconstructed from GRACE data using SSA. Our method can identify and eliminate the nonlinear long-term variations of the equivalent water height time series recovered from GRACE. Therefore the mixture effect of the long-term variations can be avoided in the annual modes of SSA. For the global terrestrial water recovered from GRACE, the peak to peak value of the annual signal is between 1.4 cm and 126.9 cm, with an average of 11.7 cm. After the long-term and the annual term have been deducted, the standard deviation of residual time series is between 0.9 cm and 9.9 cm, with an average of 2.1 cm. Compared with the traditional least squares fitting method, our method can reflect the dynamic change of the annual signal in global terrestrial water, more accurately with an uncertainty of between 0.3 cm and 2.9 cm.


2017 ◽  
Vol 598 ◽  
pp. 657-668 ◽  
Author(s):  
R. Sánchez-Montero ◽  
C. Alén-Cordero ◽  
P.L. López-Espí ◽  
J.M. Rigelsford ◽  
F. Aguilera-Benavente ◽  
...  

Solar Physics ◽  
1994 ◽  
Vol 152 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Judit M. Pap ◽  
Richard C. Willson ◽  
Claus Fr�hlich ◽  
Richard F. Donnelly ◽  
Larry Puga

2015 ◽  
Vol 74 (5) ◽  
pp. 3993-4009 ◽  
Author(s):  
Jian Huang ◽  
Xixi Wang ◽  
Beidou Xi ◽  
Qiujin Xu ◽  
Yan Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document