scholarly journals Rainfall models – a study over Gangtok

MAUSAM ◽  
2021 ◽  
Vol 61 (2) ◽  
pp. 225-228
Author(s):  
K. SEETHARAM

In this paper, the Pearsonian system of curves were fitted to the monthly rainfalls from January to December, in addition to the seasonal as well as annual rainfalls totalling to 14 data sets of the period 1957-2005 with 49 years of duration for the station Gangtok to determine the probability distribution function of these data sets. The study indicated that the monthly rainfall of July and summer monsoon seasonal rainfall did not fit in to any of the Pearsonian system of curves, but the monthly rainfalls of other months and the annual rainfalls of Gangtok station indicated to fit into Pearsonian type-I distribution which in other words is an uniform distribution. Anderson-Darling test was applied to for null hypothesis. The test indicated the acceptance of null-hypothesis. The statistics of the data sets and their probability distributions are discussed in this paper.

2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Vitthal Anwat ◽  
Pramodkumar Hire ◽  
Uttam Pawar ◽  
Rajendra Gunjal

Flood Frequency Analysis (FFA) method was introduced by Fuller in 1914 to understand the magnitude and frequency of floods. The present study is carried out using the two most widely accepted probability distributions for FFA in the world namely, Gumbel Extreme Value type I (GEVI) and Log Pearson type III (LP-III). The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) methods were used to select the most suitable probability distribution at sites in the Damanganga Basin. Moreover, discharges were estimated for various return periods using GEVI and LP-III. The recurrence interval of the largest peak flood on record (Qmax) is 107 years (at Nanipalsan) and 146 years (at Ozarkhed) as per LP-III. Flood Frequency Curves (FFC) specifies that LP-III is the best-fitted probability distribution for FFA of the Damanganga Basin. Therefore, estimated discharges and return periods by LP-III probability distribution are more reliable and can be used for designing hydraulic structures.


2009 ◽  
Vol 05 (03) ◽  
pp. 635-652 ◽  
Author(s):  
MOSTAFA M. HASSAN ◽  
AMIR F. ATIYA ◽  
NEAMAT EL GAYAR ◽  
RAAFAT EL-FOULY

In this paper, we consider the problem of missing data, and develop an ensemble-network model for handling the missing data. The proposed method is based on utilizing the inherent uncertainty of the missing records in generating diverse training sets for the ensemble's networks. Specifically we generate the missing values using their probability distribution function. We repeat this procedure many times thereby creating a number of complete data sets. A network is trained for each of these data sets, thereby obtaining an ensemble of networks. Several variants are proposed, and we show analytically that one of these variants is superior to the conventional mean-substitution approach for the limit of large training set. Simulation results confirm the general superiority of the proposed methods compared to the conventional approaches.


Radiocarbon ◽  
2016 ◽  
Vol 59 (5) ◽  
pp. 1623-1627 ◽  
Author(s):  
Ron W Reimer ◽  
Paula J Reimer

AbstractA regional offset (ΔR) from the marine radiocarbon calibration curve is widely used in calibration software (e.g. CALIB, OxCal) but often is not calculated correctly. While relatively straightforward for known-age samples, such as mollusks from museum collections or annually banded corals, it is more difficult to calculate ΔR and the uncertainty in ΔR for 14C dates on paired marine and terrestrial samples. Previous researchers have often utilized classical intercept methods that do not account for the full calibrated probability distribution function (pdf). Recently, Soulet (2015) provided R code for calculating reservoir ages using the pdfs, but did not address ΔR and the uncertainty in ΔR. We have developed an online application for performing these calculations for known-age, paired marine and terrestrial 14C dates and U-Th dated corals. This article briefly discusses methods that have been used for calculating ΔR and the uncertainty and describes the online program deltar, which is available free of charge.


2012 ◽  
Vol 706 ◽  
pp. 118-149 ◽  
Author(s):  
Dennis P. M. van Gils ◽  
Sander G. Huisman ◽  
Siegfried Grossmann ◽  
Chao Sun ◽  
Detlef Lohse

AbstractStrongly turbulent Taylor–Couette flow with independently rotating inner and outer cylinders with a radius ratio of $\eta = 0. 716$ is experimentally studied. From global torque measurements, we analyse the dimensionless angular velocity flux ${\mathit{Nu}}_{\omega } (\mathit{Ta}, a)$ as a function of the Taylor number $\mathit{Ta}$ and the angular velocity ratio $a= \ensuremath{-} {\omega }_{o} / {\omega }_{i} $ in the large-Taylor-number regime $1{0}^{11} \lesssim \mathit{Ta}\lesssim 1{0}^{13} $ and well off the inviscid stability borders (Rayleigh lines) $a= \ensuremath{-} {\eta }^{2} $ for co-rotation and $a= \infty $ for counter-rotation. We analyse the data with the common power-law ansatz for the dimensionless angular velocity transport flux ${\mathit{Nu}}_{\omega } (\mathit{Ta}, a)= f(a)\hspace{0.167em} {\mathit{Ta}}^{\gamma } $, with an amplitude $f(a)$ and an exponent $\gamma $. The data are consistent with one effective exponent $\gamma = 0. 39\pm 0. 03$ for all $a$, but we discuss a possible $a$ dependence in the co- and weakly counter-rotating regimes. The amplitude of the angular velocity flux $f(a)\equiv {\mathit{Nu}}_{\omega } (\mathit{Ta}, a)/ {\mathit{Ta}}^{0. 39} $ is measured to be maximal at slight counter-rotation, namely at an angular velocity ratio of ${a}_{\mathit{opt}} = 0. 33\pm 0. 04$, i.e. along the line ${\omega }_{o} = \ensuremath{-} 0. 33{\omega }_{i} $. This value is theoretically interpreted as the result of a competition between the destabilizing inner cylinder rotation and the stabilizing but shear-enhancing outer cylinder counter-rotation. With the help of laser Doppler anemometry, we provide angular velocity profiles and in particular identify the radial position ${r}_{n} $ of the neutral line, defined by $ \mathop{ \langle \omega ({r}_{n} )\rangle } \nolimits _{t} = 0$ for fixed height $z$. For these large $\mathit{Ta}$ values, the ratio $a\approx 0. 40$, which is close to ${a}_{\mathit{opt}} = 0. 33$, is distinguished by a zero angular velocity gradient $\partial \omega / \partial r= 0$ in the bulk. While for moderate counter-rotation $\ensuremath{-} 0. 40{\omega }_{i} \lesssim {\omega }_{o} \lt 0$, the neutral line still remains close to the outer cylinder and the probability distribution function of the bulk angular velocity is observed to be monomodal. For stronger counter-rotation the neutral line is pushed inwards towards the inner cylinder; in this regime the probability distribution function of the bulk angular velocity becomes bimodal, reflecting intermittent bursts of turbulent structures beyond the neutral line into the outer flow domain, which otherwise is stabilized by the counter-rotating outer cylinder. Finally, a hypothesis is offered allowing a unifying view and consistent interpretation for all these various results.


2015 ◽  
Author(s):  
Suhaib A. ◽  
Khairunizam Wan ◽  
Azri A. Aziz ◽  
D. Hazry ◽  
Zuradzman M. Razlan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document